Network Synthesis

R.J. Marks II Class Notes Rose-Hulman Institute of Technology (1970)

. .

.

THPT

7

PARAMENT OF A PARSIE

printer Elatra

· 68 5 32 9-11-72 Ing The I.s. e Va EXAM ON SEPT ASSIGNMENT: 1:57 9-12-72 NON PLANAR NETWORK SOLUTION MM M/11, 18 et en Tal. Anti-Tal. Ve II p TWO PORT OUR TERMINAL 1 - 9 ASSIGNMENT : 1-13 7/2 --- 1/_ 80000 \$3 .2. -> = 1 + 35+6 = 35²+75+5 5(5+5) Z3= 5 + and the second s

+ Y. Y. 1 PY12V2 t V $\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{Y}_{11} & \mathbf{Y}_{12} \\ \mathbf{Y}_{21} & \mathbf{Y}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \\ \mathbf{V}_2 \end{bmatrix}$ PARSIVE Ersz. NEFWORK Ya, (DY12V) (DY15V3 ÉYiz. žY., Ty 美Y,+Y,= (++)(V=-V) (+5 V, wVs - YIZ. Lart $+ \frac{c}{V_i}$ T. ZY21+Y21 \$ \$ Y.,+ Y.a IF Yip Ya, CTRUE FOR PASSIVE METWOPKS) 2.2 (HOMEWORK)

 $\frac{5^2-5+1}{5^2+5+1}$ o <u>FLAT</u> $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \end{bmatrix} \begin{bmatrix} Y_{11} & Y_{12} \end{bmatrix} \begin{bmatrix} Y_{11} \\ Y_{21} \end{bmatrix} \begin{bmatrix} Y_{12} \\ Y_{12} \end{bmatrix} \end{bmatrix} \begin{bmatrix} Y_{12} \\$ $\left[\begin{array}{c} v_{1} \\ v_{2} \end{array} \right] = \left[\begin{array}{c} y_{-1} \\ y_{-1} \end{array} \right]$ AY = YII 112 - Y12 Y21 Y-1 = [+ Y22/Ay - Y12/Ay] -Y21/Ay Y11/Ay] PARAMETERS $\begin{bmatrix} v_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} h_1 & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} z_1 \\ v_2 \end{bmatrix}$ $\begin{bmatrix} i & J_{v_1} + \begin{bmatrix} 0 \\ i \end{bmatrix}_{v_2} = \begin{bmatrix} h_{i_1} \\ h_{o_1} \end{bmatrix}_{I,I} + \begin{bmatrix} h_{i_2} \\ h_{o_2} \end{bmatrix}_{V_1} = \begin{bmatrix} h_{i_1} - h_{o_1} h_{o_1} \\ h_{o_2} \end{bmatrix}_{V_2} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_1} \\ h_{o_2} \end{bmatrix}_{V_2} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_1} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_1} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o_2} \end{bmatrix}_{V_{o_1}} = \begin{bmatrix} h_{i_1} - h_{o_2} h_{o_2} \\ h_{o$

ingener Lever The Arest o Zilin 212 MNNM-1212 V2=0=>G12=I(211=Z13=2212) 210 Zil (2-10) 9-18; (MON) $S = \{r_1, \dots, r_n\}$ $[Y \in Rio:$ $f_1 = \begin{bmatrix} h_1, h_1, \dots \\ h_2, h_2 \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}$ $f_1 = \begin{bmatrix} h_2, h_2 \\ V_2 \end{bmatrix}$ $f_1 = \begin{bmatrix} h_2, h_2 \\ V_2 \end{bmatrix}$ NY BRID; h' h=h'th" 'n″ 2-20 (pg 58)

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{1}} = \frac{1$ Y3 V3 (577 \$ Y3+Y1+Y1= -Y12 \$ \$ Y2+Y1+Y2)= $\begin{bmatrix} I_1' \\ D \end{bmatrix} = \begin{bmatrix} Y_5 V_5 \\ 0 \end{bmatrix} = \begin{bmatrix} Y_5 \dagger Y_{11} & Y_{12} \\ Y_{12} & Y_{23} \dagger V_{12} \\ V_{12} & Y_{23} \dagger V_{12} \\ V_{23} \end{bmatrix}$ $V_{1} = \frac{Y_{5} V_{5} (Y_{22} + Y_{1})}{V_{2}}$ $V_{2} = -\frac{Y_{12} Y_{5} V_{5}}{A}$ = You Av + Ye yout Ye 411+ Ye Ke $\frac{Z}{V_{1}} = \frac{Y_{1}}{V_{1}} = \frac{Y_{1}}{\Delta \gamma + \gamma_{0} \gamma_{12}}$ $\frac{Z}{V_{1}} = \frac{Z}{\Delta \gamma + \gamma_{0} \gamma_{12}}$ $\frac{Z}{V_{1}} = \frac{Z}{\Delta \gamma + \gamma_{0} \gamma_{12}}$ $\frac{Z}{V_{1}} = \frac{Z}{V_{1}} = \frac{Z}{V_{1$ $\begin{bmatrix} V_3 \\ - \end{bmatrix} = \begin{bmatrix} Z_5 + Z_1 \\ - Z_1 \\ Z_1 \\ - Z_1 \\ -$ 212 ZL V3 - Az + Zs Zoot ZLZII+Zs ZL 工包 载化 合 环 每 环

2(0) $= 2(5) = \frac{a_s}{b_s} \frac{4}{b_s} \frac{a_s}{b_s} \frac{4}{b_s} \frac{1}{s} \frac{1}{b_s} \frac{1}{s} \frac{1}{b_s} \frac{1}{s} \frac{1}{b_s} \frac{1}{b_$ 7.(5) $= \begin{pmatrix} \rho_{c} \\ \beta_{c} \end{pmatrix} \begin{pmatrix} c_{s-2} \\ \beta_{s-2} \end{pmatrix}$ MUST = m = n; m = n+1; m = n-1Re{103220 IF ReliszZO (3. A.) Yes) is Real rom i seed _ R. [Y(S)] > O FOR RO(S) > O LEYES) IS Real FOR S REAL Re [Y(jw)]>0

$$\begin{array}{c} 4-2.172, (g+a)(g+3) = \frac{A}{37.1} + \frac{B}{54.03} + \frac{B^{*}}{37.1} + \frac{B}{57.1} + \frac{B$$

('2

ĺ.

(3

(^{1.1}

ć (I

1 . 1

(

i 1

, . (

BUT IN THIS CASE, BOTH MCS) & N, AND THUS P(S) HAS COMMON TERMS OF S2+4 EASIER WAY 13: AN $|n(s) = 35^{5} + 155^{3} + 125 | 5^{6} + 85^{4} + 125^{7} + 4 = m(s) | 35 \\ 35^{5} + 135^{3} + 45 | 5^{6} + 55^{4} + 45^{2}$ 5 3.0 354+1352+4 253485 25 253+45 354+1252-5-+4 ACAIN; A COMMON FACTOR p(s)LET $p(s) = s W(s)p_1(s)$; $W(s) = s^2 14$ $\frac{m(s)}{h(s)} = \frac{\frac{1}{2} \left[\frac{p(s) + p(-s)}{p(s) - p(-s)} \right]}{\frac{p(s)}{p(-s)} + 1}$ LET IF P(S) IS HERWITZ, W(S) IS TOO, AS IS /p(S) LET 4(5)= a, 5+ 4, 6)

9-25-72 (4-4) p(s)= 9,5 "19,5" + 9,5 + 9,5 + 9,5 = 0 n(s) = 9053+025 - 9,92:9,03,20 => 9,92 > 9,92 20,92 9642>97 (mapper restant the WSING ROUTH . ge. 92 5° a 2 a . a . a . a . a . 3 03 50 $(4-5) = \frac{5^5 + 245^3 + 225}{55^4 + 225^2 + 6}$ 1) 112 12-19

9-26-72

Y(S) MUST BE POSITIVE REAL FOR RIC SYNTHESIS NECESARY AND SUTTICIENT ORITHRIA DIF YG) IS REAL FOR REAL S AND RESYCENZZO FOR RECENZO SOLVED BY HURWITZ OR ROUTH ALGORYTHM DIF POLES OF YGJAREN'T IN THE RIGHT HAND PLANE AND JWAXLS POLES ARE SIMPLE, AND HAVE POSITIVE REAL RESIDUES PSOLVED BY HURWITZ AND ROUTH. OIF REYGUIZ FOR OLUSOS LEF A(W2) = [m.m2-ning] soje 9 IN SEVEN PART OF NUMERATOR. M2" LVEN." " DENOMINATOR N2" LVEN." " DENOMINATOR N2" ODU " " " A(w2)

F(s,) = Re[F(s,)] + lim [F(s,)]) - mrs.) + p(s,) - * ((wrong 1-3) a) LET F(s,*): m(s,) + n(s,) F(s,*): m(s,*) + n(s*) = m(c) = n(c)DA(S,*) B(S,*) = A(S) B(S). iET F(s,) = A(s,)B(s,) $\Rightarrow F(s*) = F(s) -$ > A (3,) B (3) = AB 4-12 ALL COEFF ARE >0 A(w) = w6. 3w1 - w2+3 $= (\omega^{4} - 1)(\omega^{2} - 3)$ = $(\omega^{2} + 1)(\omega^{2} - 1)(\omega^{2} - 3)$ (ACW)) W EAN'T STNTHYSIZE STURM B(x)=x3-3×2-×+3 P, (x)= 3x 2 - 6x -1 $FIND = \frac{P_{c}(x)}{P_{c}(x)} =$ TEST ON MONDAY

$$\begin{pmatrix}
q.27+72 \\
q.22+72 \\
F(3) = F(3) \\
F(3) = F(3) \\
F(3) = F(3) \\
=$$

~

OA(w2)= w = + 2w = 3w = 4w + 2 0000 $\frac{FOR}{P_0(x) = x^4 + 2x^3 - 3x^2 - 4x + 2}$ Per Por Pr Pp Pa No. 0 . Carl Contraction " ROOTS ARE SIMPLE, AND ACLODED $d) A(\omega^2) \ge 0$ 1-19) Y(3) = 52+652-17513 (5+1)? I) NO RT. H.P. POLES - 2) NEN J AXIS POLES ARE SIMPLE W/+ RESIDUS 3) RELYGUDJZO, OG WEDD JACWZZO O CHECK NOMERATOR 2. HURWITZ A(w?) = (m, m, 2= m, 22) = [(65=+3)(5=+1) - (5=+75)25]s=fe = 4004+5002+320 NOM & DEN ARE HERWITE BY INSPECTION! A(w2)-5404+2900=20.

a) Y(s):387 ROUTH 0611 531 >2542=0 82 T. MODIFIED NURWITZ NUM; 53 52+5=0 -> Y(s)= 5+2 S(S2+U(S2+4) (S2+3)(S2+5) (2) = <u>55+55+45</u> <u>51+852+15</u> NOTE Y(3) = S+ Y, (S) = Y, (S) = -3 + 715 _ RESIDUES. Y (s)= 5+23+ 573+ 540 - 5+215 RESIDUES ARE REAL, BUT & O ELE AND ROS COEFF SNOT POSITIVE REAL (1) DEN. IS HURWITZ FROM ROUTH A(W)= WO + AXIS POLES, SO IS NOM A(W)= W= + 4 WE + 6 W + 4 W= + 1 + 10046 USE STURMAS Pe P, Pe PB -&.). 0. × *a*2 4 1(w?)>0 \$ Y(2) POS REAL h) NOT POS. REAL 1)

9-30-71 $Y(S) = \frac{P(S)}{q(S)}$ LOOK AT P(S)+q(S) LET W= 7+1 W PLANE 1YG1 51 PUTS RIGHT HALF PLANE IN UNIT CIRCLE W= Y+1 = X+1B-1 Y(jw) 20 ; 0 & w & 0 = (W IW(S) EL FOR SZO Y(S)= 4+ W(S) => P.r. IF W(S) IS REAL FORS REAL (W(S)) =1 FOR Ros20 NOTE THAT POLES OF W ARE ZEROS OF Y+1 IF Y IS BR., THEN ITY IS P.R. 15 5, 15 IN RHP, AND Y(S,)+1=0, THEN Y(S,) = 1 $W = \frac{Y-1}{Y+1} = \frac{p(s)-q(s)}{p(s)+q(s)}$

POLE REMOVAL 1) @ 00 _____) @ o 3) CONJUGATE IMAGINARY 4) PARTIAL POLE 5) CONSTANT (NOT A PELE) 10-2-72 TEST IS OPEN BOOK-OPEN NOTES 10-5-72 (1-0) $\frac{z_{ic}(s)}{Z_{ic}(j\omega)} = \frac{m}{n} or m$ dx(w) dw >0 5 FOSTER'S FIRST EXPANSION Zucs)=HS+ = + = 2 Kimm / (s2100pm)) - 777-----No 215 Jupa S (aks/wpN2) TR 1/2K

FOSTER'S 2nd FORM: YLC(S)= Z(S) HST 45 + E H Martin Ko E 1/2.1< 21</wpn <u>_</u> (5-2) -2) <u>3(63+-2)</u> Z(6)= (63(1)(53)21 FIRST FOSTER, FORM E(S)= 52+1 + BS 52+3 A= +1/2 B=1/2 2(s)= 32+1 + 5+3 = 25+ 25 /2 //2 //6 FOSTER FORM SECOND Y(s)-ASI SPL A = 1 B= 1/2 2 3/2 3212 + 312 Y(3)= 5+ income 1 E 2/3

SNEED @ ORIGIN TO ALTERNATE POLL 5-8) $Z(S) = H \frac{S(S^2 + (2\pi + 2\mu)\delta^2)^2}{[S^2 + (2\pi + 2\sigma)^2][S^2 + (2\pi + 5\phi)^2]}$ CAUER'S FIRST (REMOVAL OF POLLS @ 00 54410549 INCOM ESPOR 2(0)= 2. . . 2.2 5 + 20 $Z_2(S) = Z(C)$ = $\frac{2S^2+9}{2S^2+9}$ $X_{a}(\varepsilon) =$ reconstructures and the manufacture and the second se (s) = Z(s)+ 3999----14 $\frac{SECOND}{S^{4} + 10S^{2} + 9} = \frac{9 + 10S^{2}}{4S + 5^{3}} + \frac{9}{5} + \frac{$ CAUER'S - 2 (s) * Y 9/45 4/9 \$ 31/15 Contract De

-10=5-72-CHAPIG Z= Rtsc = C s+1/RC Construction ANAM pressurements for the construction of the constr Y: R+ 25 R S+1/RG $\mathbb{Z}^{(\sigma)}$ 42<0 S PLANE Ó 5 RC Y.CO) dr(0) d 0 20 Ő $Z_{1c}(s) = \frac{m}{n} o R \frac{m}{m}$

I I = V (FROM MESH) 2(5) $I = V_1 \Delta_{11} / \Delta \Rightarrow z = \frac{V_1}{2} = \frac{\Delta(z)}{\Delta_{11}(z)}$ R+L p (Rp+op) SO FOR R-C NETWORK ZE AND P ZIEP) p2=5 Trees = p [Y. o Gallpas

10-13-72 5-8) 2(3) - 52+1,22 + 52+32 14867 u F ,698 6.47mH 25,2mH 2 FOSTER'S SECOND FORM 13.13.4 F - 3.0 SUE \$ 31.6 m H () en CAVER'S FIRST 1. E 22,2 •657 g 1,23 LEP 200 • 41 4921 F \$ 6,93mH = 1.79aH E310 7/11

5-12) Zer S. A. Level A. escencialization 5 des consistencialité (consistencialité 2,5 trut Ringing 5 812 - 1/87 = 9/5 - 8 X(w CX L. 8000 →P(w) ×(w) 8,7 B(w) 10 10 10 P W UN 0 $X_{i}(\omega)$

5-14)9) Ċ 6) \mathcal{O}

(5-16) Z(5)= S(5213) = S3125 S211)(5214) = S1+55244 2 26 53+25 54+552+4 5 53 <u>3</u> 5 3 5 <u>3</u> 5 54+252 land and and a second 352+4 25 41 Ô CAVERS FIRST 76 1/3 ******* - 9/2 and the second s R, (6-1) ZRa \$ 8/3 FCZ tiinin Serif Liniumu ** RITSC AL +SC2

 $\begin{array}{cccc} (s+2)(s+6) \\ (s+2)(s+6) \\ (s+1)(s+3) \\ (s+1)(s+3) \\ (s+1)(s+3) \\ (s+3) \\ (s+$ 5+3 24 1 Va -(s +t)(s+3) ____(st2)(s+5) ¥(S)/5 2) (SE5) 1/3 + 6+8 + 15+75 energi terreste so o se se la constante da la c eta en al a construir de la constr <u>z 10/3</u>

10-12-72 6-8;6-11; (2-25;6-15);6-1;6-3 CAULER: ZRE(S) = Set ZEFOZ + Kas REEGUN do a $R(z_{2}(z)) = \frac{z(z) + z(-z)}{z}$ $= \frac{z(z, \omega) + z(-z, \omega)}{z}$ = [= Ki w2+022] + Kao NOW O; >0 lim E Ki wator + Kol - Kos Ko C

2-25-72 Ro (2 - 2.5)Ro V2 ZRO Zb ∇_{λ} 2, Za= Ro V2-2(1+ R3) > -7, = (1+ Z9/R.) VAS R. Ro $\frac{1}{\sqrt{2}} = \frac{1}{(1+2)}(1+2) = \frac{1}{\sqrt{2}}$ and the second s

10-16-72 Za Za EA UNA 2 2 B 820 25= 122, 22 Za ZA 22.2.C 272-25 222B $\frac{2}{2}$ ZaZg Raing are from the the the Rop SRO $\frac{1}{2}$ (6-8)/9) ZRL (b) ZRC

6-11) $z, \frac{z}{z}, \frac{z}{z}$ 1.2. 0------2-, t- 2--, = 1 -7++72=1 EF1-EF1- $(a) = 2 = 1 - z, \quad will BE POBREAL IF Re(z,) \leq 1$ $Y_2 = 1 - Y_1$ $(Y_1) \leq 1$ 6-17-72 2-25) June Z V, 1+20/Ro ZRo 158 ZAZ6=Ro² RI 6-15) Vi ¥.2 ---- L'MZRo $\frac{1}{2} = \frac{2}{1} = \frac{2}{1} \left(\frac{2}{1} + \frac{2}{1} \right) \left(\frac{2}{1} + \frac{2}{1} + \frac{2}{1} \right) \left(\frac{2}{1} \right) \left(\frac{2}{1} + \frac{2}{1} + \frac{2}{1} \right) \left(\frac{2}{1} \right) \left(\frac{2}{1} + \frac{2}{1} + \frac{2}{1} + \frac{2}{1} \right) \left(\frac{2}{1} + \frac{2}{1} + \frac{2}{1} + \frac{2}{1} \right) \left(\frac{2}{1} + \frac{2}{1} + \frac{2}{1} + \frac{2}{1} \right) \left(\frac{2}{1} + \frac{2}{1} + \frac{2}{1} + \frac{2}{1} \right) \left(\frac{2}{1} + \frac{2}{1} + \frac{2}{1} + \frac{2}{1} \right) \left(\frac{2}{1} + \frac{2}{1} + \frac{2}{1} + \frac{2}{1} \right) \left(\frac{2}{1} + \frac$

1000 3000 900 \$ 2(j100)=600 271 (1000) 2 (10 m jam 0.w) $= \frac{s^2 + 2\pi (6200)^2}{\left[5^2 + (2\pi 9000)^2 \right] \left[5^2 + (2\pi 9000) \right]}$ RLC EOSTER PREAMBLE P. REAL, PELL POLES @ O (wo) 1 ON J-AXIS DULL OUT RESLATANCE. 2= 455 1454+3252+1452+55+2 Z= 455 1454+10537 952+45+1 P.R. EX) USE NURWITZ (ROUTH) TO FIND AXIS POLES NUM 55 12 32 8 DEN 55 4 10 4 54 15953 52 2677 7 $\frac{5^{2}}{5^{4}} \begin{pmatrix} 2 & 1 \\ 0 \\ -5^{6} \end{pmatrix} = \begin{pmatrix} 2 & 5^{2} + 1 \\ -5^{6} \end{pmatrix} = 0$ SZ 10,36 2 51 2.87 50 2 3 Z(S) = 5 2+1/2 + 25²+1 / 45 + 14 5 + 105 3 + 95² + 45+1 455 +105

 $s^{2}, \frac{4}{3}s^{2} + \frac{2}{3} / (s^{3} + 2s^{2} + 2s^{3} + 1)$ (P.R.) 2-18-72 2 (2) 153 325 7 4 35. 2.5.4 \$ 5 + L ~ 3 374 Mir at 1997 and 1 62 152165t9 (x 3) Z(G) = 52+5+1 (RR.)A) NO O OR O POLES & MINIMUM REACTANCE - b) NO & AXIS POLES DAINIMUS SUSCEPTANG DEAN'T POLL OUT L-C $\frac{c}{L} \approx \frac{c}{(Z(S))} = \frac{c}{(m,m_2-n,n_2)} / \frac{c}{m_2^2 - n_2^2}$ = (652+9)(52+1)-652 (52+1)"-S" = 654+952+9 > R(Z(jw)) = EV[Z(s)]s jw 6 w 4 - 9 cu 2 + 9 w 2 - w 2 + 1 EINO VALOL. MIN (1004-10"+1) (10W2.9) - (0W4-9W39) (2011) dwar Re Cza, w) = 0= (23) $= \frac{3\omega^{2}-6w^{2}}{p^{2}(w^{2})} = \frac{3\omega^{2}(w^{2}-2)}{p^{2}(w^{2})} = \frac{3\omega^{2}(w^{2}-2)}{p^{2}(w^{2})}$ => w== 0; 1 w=

9 25 42 SO REMOVE RESISTANCE OF SJL $\frac{(s^{2}+6s+9-5(s^{2}+6+1))}{s^{2}+s+1}$ = 52+5+4 MIN X, B = 52+5+1 MIN R, G TO BRUNE'S METHOD: $R[Z(\overline{J}[\overline{Z}])] = 0 \Rightarrow Z(\overline{J}(\overline{Z}) = X(\overline{J}(\overline{Z}))$ EIND FUNCTION'S ODD DANTS ODD[Z(s)]= CIPININS/(m2-n2) $-(s^2+1)s-(s^2+4)s$ (< 2 4 1) 2 - < 2 Dane [Z. Gui) = Odd [ZCS] [s j. w) > j Om [ZGVZ] = 4-211 = - j VZ i, Cu-VZ; X = -12 (NLGATIVE INDUCTANCE) $\Rightarrow Z_1(s) = Z(s) - (-s) = Z(s) + s$ 0000

. .

ł

Ĺ
M = BANBE EC+B $V_1 = L_1 \frac{d^2}{d^2} + M_1$ $V_2 = t M_1 \frac{d^2}{d^2} + L_1$ $v_{=}(L_{p}+L_{m}) \stackrel{di}{=} \stackrel{di}{=} \stackrel{d}{+} \stackrel{d}{=} \stackrel{d}{=}$ Kreaus + 2 vi dit Lp moro-E LM LI= Lp+LA $L_{2} = L_{5} + L_{M}$

10-23-72 (7-1, 7-2, 7-5, 7-11, 7-15) Y(5) = Y(5) 7-5) WHAT IS MINER (YGW) ?! ? $Re[Y(j,\omega)] = m_2^2 - m_2^2 ; A(\omega^2) = m_1 m_2 = h_1 n_2.$ <u>d Rofy(jw)]</u>= 0 = × "+0, × 3 tax 2 tax + b SYNTHE TIC DIVISION 3×2+4×+12 X = 2 (3X³ = 2X² + 4X = 2.7 3X³ = 6X² 4x =+4x - 27 11 X 3 - 8X 12× ·27 12.X = 2.61 3+4+12 3-2+4-27 2) <u>3 - 6</u> 4 4 - 8 12 12

3+4+12 1-2/3-2+4-27 4 12 73 2/3-2.44-2.7 24 3412 e . . 2)3-2+4-27 3 4 12 - 3 3 - 2 4 - 27/-2 -6 t6 - 40 3 - 8 20 - 67 · 2. 4. · 27 [2. 6. 5. 24 3. 4. 12. · 3 Ŋ 3

REMAINDER THEM. p(s) = 9,15", 100 $\frac{P(s)}{(s-s_1)} = q(s) + \frac{R}{s-s_1}$ P(S)= q(S)[S-S]] + R $P(s_i) = R$ 10-23-72 $\frac{EVALVATION}{Z_{2}} = \frac{OF}{q} = \frac{PESIDUES}{(S^2 + 2S^2 + 7S^2 - 24S - 8G)}$ $= \frac{k_{i}}{s+i-j_{2}} + \frac{k_{2}}{s+2-j_{3}} + (c_{n}y_{i}) + \frac{k_{3}}{s+4}$ $= \frac{(s+4)}{q(5)} + \frac{k_{3}}{s+4}$ LOOKING (P(S)/(S+4)-7 27 36 14 32 -166 720 ⇒ K(3) = 756 $k_1 = \frac{(s + i - \frac{1}{2} + \frac{1}{2})P(s)}{q(s)} |_{s = -1 + \frac{1}{2} + \frac{1}{2}}$ $k_{1} = \frac{-6}{4} + \frac{-4}{7} + \frac{-24}{36}$ $k_{1} = \frac{-6}{6} + \frac{4}{7} + \frac{-24}{36}$ $k_{1} = \frac{-6}{6} + \frac{24}{7} + \frac{-24}{36}$ -6 -12 30 14 28 36

REMAINDER: (-225-24) 5=-1+j-2 = 22-j44 - 34 = -12-j44 \Rightarrow k, = -(12+(44))Un= 53+852+295+52 125)1 5 24 52 Area . 14 52 6 6 12 30 12 10++24 K,= (s+ 1+ j 2)(i2s+22)|===1+j2 k,= (96+ j 40) $n \ge m + 1 \Rightarrow \mathbb{Z}_{k_j} = 0$ $n = m + 1 \ge \mathbb{Z}_{k_j} = \frac{q_m}{b_n}$ $\frac{P(G)}{q(G)} = (G(G)) q_{1}(G)$ $\Rightarrow q(s) = (s - s) q(s)$ q'(s) = q(s) = (s - s) q'(s) q'(s) = q(s) $\Rightarrow k = \left[\frac{p(s)}{q'(s)} \right]_{s=s_1}$

 $k = \left[\frac{d(p)}{ds}\right]_{s=s_1} = \left(\frac{d(q)}{ds}\right)_{s=s_1}^{\prime} \ge q = \frac{1}{2}$ $f = f(\hat{s})$ $\frac{d}{ds} = \left(\frac{pq'-qr}{p^2}\right)_{s-s} = \left(\frac{q'}{p}\right)_{s-s} = \left(\frac{q'}{p}\right)_{s-s}$ $Y = \chi^{4} + 4\chi^{3} - 8\chi^{2} - 8\chi + 3 = 0$ = 2 × = ω DESCARTE'S RULL OF SIGN V= SIGN CHANGES= 2 => 2 pos RTS CHANGING SIGNS ON EVEN OR ODD TERMS Y' = Y 4 4 4 3 - 6 Y 2 + 8 X + 3 - 6 V=2 3 2 NEGATIVE ROOTE ROPTS TO TRY (3, -3, 1=1) 14-8 8 3 4 Y, (0) = 3 Y, (1) = · 9

10-25-72 BRUNE'S METHOD ZG) IS MINIMULY FUNCTION a) \$NO O OR @ POLES b) NO f. AXIS POLES OR O c) Ro [ZGw]] = O @ w, A) DETERMINE Z (jw) = jX = X>0 gR X <0 B) REMOVE LI= Y/w. (L<1 => TRANSFORMER) LET 2,(3) = 2(3) - 5L SINCE Z, (s) HAS A ZERO (S.W., SINCE Z, (s) HAS A ZERO (S.W., STHE POLE OF Y, (s) IS NOW REMOVED. Y 2 (s) = Y, (s) = $\frac{2|k|^2}{2|k|^2}$ $= \frac{1}{2|k|^2}$ $= \frac{1}{2|k|^2}$ SINCE Z, (S) HAS A ZERO (C) W, $\frac{1}{2|z^{2}+z_{0}|} = \frac{1}{2|z_{0}|} = \frac{1}{2|z_{0}|}$ 6-000 FT2K1 FT2K1 T 252 FM $= \left[\frac{d(z(s)-L(s))}{ds} \right]_{s=ice}^{-1}$ 12=2K=2[d(23)-1-1]s=, i.e.,

 $(MINIMUM FUNCTION : b,q,= (Tao - Vbo)^2$ $s^2 + q, s + ao$ = + b, s + boNOTE Cas Lyar Z = YZ MUST HAVE A POLE @ S= a CORRESPONDING TO L3 L3 = fim Z3 (5)/5 = lim = [-], (s) = 2ks = s>0 5 [-], (s) = 2ks = s >0 5 - line 5 2(5)-54 - 2/25 535 5 2(5)-54 (9)2 the states E,+Le EM=KVIALS C LA E EB TO DATE La L1 0000 1000 ξL2 223=22-5L3 123

 $\frac{s^{2} + \frac{1}{2} = + \frac{1}{2}}{R_{e} \left[Z(j_{w_{i}}) \right] } \xrightarrow{\mathcal{O}} w_{i} = 1$ 22(j-w)=j-X- $\begin{bmatrix} o & f \\ z & (c_s) \end{bmatrix}_{s=j(w)} \stackrel{?}{\geq} Im Z (f w) \\ = J \stackrel{!}{\geq} \stackrel{!}{\geq} \stackrel{!}{=} Im Z (f w) \stackrel{!}{=} Im Z (f$ \Rightarrow $L_1 = \frac{1}{2} = \frac{1}{2}$ $\frac{z_i(s) = z_i(s) - \frac{z_i(s)}{z_i} - \frac$ $= \frac{1}{2} \left[\frac{qp}{q^2} - \frac{pq}{2} + \frac{1}{2} + \frac{1}{2} + \frac{q}{2} + \frac{1}{2} + \frac{1}{2}$ $= \frac{1}{2} \begin{bmatrix} \frac{(s^2 + s + s)(2s + \frac{1}{2}) - (s^2 + \frac{1}{2}s + \frac{1}{2})(2s + 1)}{(s^2 + s + 2)^2} - \frac{1}{2} \end{bmatrix}$ $Z_{1}(s) = Z_{1}(s) - L_{1}s$ $Y_{2} = Y_{1} - \frac{Y_{12}s}{(s^{2} + \omega)^{2}}$ 23-22-13-5

7-26-72 Z(S) Z-(S) - MINIMUM - X120 ->2 Z,Gw,I=jX K X, CO ZY $\frac{R(s) = \frac{KZ(s) - SZ(k)}{KZ(s) - SZ(k)}$ P.n. KRO IKIEK <u>sik, (k) + k Z, (k) R(s)</u> K + s R (s) 22,61= = R(s) + E = Z(k)RG KE, (k) $\frac{1}{Y_b} = \frac{1}{Z_1(K)} = \frac{1}{SL_k}$ Z, (K)/R Z, (K)R(S) 200 VKZI(K) Za Ze = Z, (K) (7-19-7-21)

10-31-72 253+52+45+1 NO POLES (DOOR OD 5 + 35 - 1 35+1 7-5) Z(S)= ROUTH GIVES NO & AXIS POLES WISH TO REMOVE CONDUCTANCE Y(5) = 23 EV(Y(S)) | S= j= a= Re(Y(j w)) FIND $dx = dx = \frac{1}{2}$ - 5.215 >x=1,918 ! 1,918 IS THE ONE! OR >w2=1.918 Re (YG VI.918)= 2.22 Re (G V3))= .713 Now Re [YGO)]=1; Re [YGO)]=2 Re (14 1.918)= 2,22 SO TAKE OUT 352+35+1 1/2 25+23+1/2 2531534541 531 5252+5+5 $\Rightarrow \gamma(s): \frac{1}{2} + \frac{5}{2}s^{2} + s + \frac{1}{2}$ $= \frac{1}{2} + \frac{1}{5} + \frac{$ $Ev(Z_{2}(s)) = Re(Z_{2}(j\omega)) = Z_{2}(s) = X_{2} + 2X + 1 = 7X = 0$ $qp' = Pq' = 0 \Rightarrow q = P' = q'$ $Re[Z(j = 0)] = Z_{2} + Z_{2} + Z_{2} = 7X + Z_{2} = 7X = 0$ $Re[Z(j = 0)] = Z_{2} + Z_{2} = 2X + Z_{2} = 7X + Z_{$ Ro [2(1-0)]=0,084-MIN

2/ (125 (7-5 670 Ør ð 1936 1175 ¢. 125 2 & Charles and the second 1 New York $\gamma\gamma$ đ \mathcal{O} 080 **V** 1993 4 4 ĺ

 $\frac{11-1-72}{(5-2)(5-2)},$ $\frac{7}{(5)} = \frac{(5-2)(5-2)}{(5-2)},$ BODE PLOT 20 db/pecade; 6.02 dB/ 20 db/pecade; 6.02 dB/ ----d &1 loger 9-19) dB 18 De de AVE DE AVE = 20 DESARE 50 40 G=K (S-p). 1+jw/5 1+24/5 C 5 G(S.)= K 1+ 5/5 1+ 3/50 1+ 3/500 Kab = 18 > 20 log 10 K = 18 => Kn8

• . . . BRUNE METHOD GIVEN Z(S) BRUNE POS-REAL? DN 4 FOSTER. PREAMBLE MIN REACTIVE SUSCEPTIVE YES FIND MIN R OR G AND REMOVE Rel? FOST Rels REMOVE Bry

11-2-72 (TEST DUE MONDAY) CHAPT. 10. TRANSFER FUNCTIONS (UNTERMINATED) => I, = 0 T, P B C 2 50 $\begin{bmatrix} v_{2} \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} t & t \\ 0 \end{bmatrix} ; z_{21} = z_{12}$ $G_{12} = \frac{\sqrt{2}}{\sqrt{1}} \int_{I_{2}=0}^{Z} = \frac{Z_{12}}{Z_{22}}$ $G_{12} = \sqrt{\frac{2}{1}} + \frac{2}{12} = -\frac{12}{12}$ FOR MESH EQUATION $\begin{bmatrix} z \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1$ POLE 5 OF -Yis, YII, Y22 o room Anna *E* χ) \$1 Y12 14 5 + 5 = 5+1+1+5 = 1 $\frac{1}{1} \frac{1}{12} \frac{$ -NOTE YO HAS NO POLES = DIFE POLES FOR YON + YIN => CASE 2

(

 Y_c Yal Ybl VII = Yat Ye - Y12 = Yo Y 22 = Ybt Ye " Y2+ POLES NOT FROM YE ARE "PRIVATE POLES REQUIREMENTS ON COEFFICIENTS OF NUM -Y, 2 - 90+9,3-19,5-+, ... + 9m5" b+bist+bacell 9(5) Y. $b_j \ge a_j \ge 0$ $c_j \ge a_j \le 0$ 1/2 Ľ! Y.2] MAY EXPAND INTO 2-PORT ~ Y1 Q. Y22 Yos [Y.,+Y2.2] (b,-a)+ (b,-a,)s+... 9(s) Y ... Y ... = = (b,-a,) 20 = b, 2a, 20 NUM(Y, 2) degrees & num(Y'22) degree

Y12 MUST HAVE BOS. NUMERATOR COEFFICIENTS, BUT CAN HAVE MISSING TERMS $G_{12} \stackrel{V_2}{=} \frac{V_1}{V_1} \stackrel{=}{=} \frac{N_{12}}{D_{12}} \frac{D_2}{N_{22}}$ Y22= (S+1)(S+3)(S+5) EX - Y, 2= (s+1)(s+3) PRIVATE POLE $-\frac{(s+1.5)(s+5)}{(s+2)(s+4)}$ G12 2 POLES IN LHP, OR SIMPLE JAXIS FOR LADDER NETWORK, O'S IN LHP

R.p WW 11-8 - 7-2 RI OF AMP + V, 1 Vð $I_1 + I_F = 6$ Rit Re= 0 $= \frac{1}{2} V_0 = \frac{1}{2} \left(\frac{R_0}{R_1} \right) V_1$ * +-Iz, Contraction of the second Va $\begin{bmatrix} I \\ I \end{bmatrix} = \begin{bmatrix} Y_{i1} \\ Y_{i2} \\ Y_{i2} \\ \downarrow \downarrow \downarrow \downarrow \end{bmatrix} \begin{bmatrix} V_{i} \\ V_{2} = 0 \end{bmatrix}$ $= \sum_{i=1}^{n} \frac{1}{12} = \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} = \frac{1}{12} \frac{1}{12}$

FREQUENCY-RESPONSE PROGRAM

The frequency-response (FREQR) program computes data for: the Nyquist plot a) Re $\{GH(j\omega)\}$ vs. $Im \{GH(j\omega)\}$ οr $\operatorname{Mag}\left\{\operatorname{GH}(j\omega)\right\}$ vs. <u>/GH(1 ω)</u> Bode Plot ("open loop" or "loop" function) 60) $\left[GB(J\omega) \right]_{dB}, LGB(J\omega)$ vs. log ω Nichol's chart 0 2 $\left[GH(j\omega) \right] dB$ vs. $\underline{IGH(j\omega)}$ Closed-loop Bode Plot 03 1 + GH, n · / 1 + GH vs. 109 40 ري. روي The G and H functions must be of the form $G(S) = \frac{AG_1 + AG_2S + \dots + AG_{NG+1}}{BG_1 + BG_2S + \dots + BG_{NG+1}} \frac{S^{NG}}{S^{NG}}$ SNH $H(S) = \frac{AH_2 + AH_2 A + \dots + AH_{NH+1}}{BH_1 + BH_2 S + \dots + BH_{NH+1}}$ SWH

S. F.

FREQUENCY-RESPONSE PROGRAM

Page 2

¢.

ſ

The $\Omega_j^{(1)}$ and "number of decades" must be specified along with the orders of the S functions NG, MG, NH, NH and the coefficients of each term. Note that $AH_j + BH_l = 1$ and NH = MH = 0 for H(S) = 1.

EXAMPLE PROBLEM

$$G(S) \simeq 5.895 + 152.936 S + 140.259 S^2 + 32.751 S^3$$

 $G(S) \simeq 5.895 + 152.936 S + 140.259 S^2 + 32.751 S^3$
 $G(S) \simeq 5.895 + 152.936 S + 140.259 S^2 + 32.836S^3 + 10.855 S^4 + S^5$

49. 19

$$\Pi(S) = 1$$

 $\left(\right)$

for $\omega_{\text{stort}} = 1$ and $1 \le \omega \le 1000$ $\omega_{\text{stort}} = 1.0$ Num, of Dec = 3

NG = 3, MG = 5, NH = 0, NH = 0

CALLING PROGRAM

P D SMITH 239 \$007 41031.STUDENT, TIO, PLO, CM50000. FUN(S) FUN(S) PFILES(GET, FREQR) REWIND (FREQR) FUN(G, ,, FREQR) 7) 8 } 9) PROGRAM MAIN(INPUT, OUTPUT, TAPE2=INPUT, TAPE3=OUTPUT) CALL FREQR CALL EXIT END 7) 8} 9} Data Deck 6 7 8 63 INPUT DATA 21 31 62 51 (array cel NUMBEC 1.0 03 NG, MG, NH, MH 3500 Λ¢ 3 32.751 152.936 140.259 5.895 0.855 45.423 33.888 1.0 116.103 \mathbb{O}_{+} EGą AU J 34, 1.

9. 9. s FOR 10-3 5 W \$ 10 = 4 DECADES 1-9)9) (5+1)(5+2) = 1 2+35+52 WATTER IN NUMPECEOS NG=0; MG=2; NH=0; MH=0 $AG_1 = 1$ BG,=2 : BG-,=3 BG-3=1 AH,=1, BH - 1. FOR 10-34 WE 10 = 4 DECADES (3+1)(5+2) 2+35+52 6) NUMBEC-03 WSTAPT + 10-3 NG=1; MG=2; NH-O; MH=O AG,=0; AG2=1 BG: 2; BG, -3; BG,=1. AH,=1 FOR 10-32 WA 10=4 DECADES BH1=1 55-5 \hat{C} 5 + 4WSTART - 10-3 NG=1; MG=1; NH=0; MH=0 AG:= 5; AG:= "5 BG,=1;BG,= 1 AH,=1 5(52-5+)) FOR 10-32W210-4 DECADES d22+5+1 WETART - 10"3 NG=2; MG=2; NH-0; MH-0 AG1=5; AG, 5; AG2=5 BH1=1; BH2=1; BH3=1 AH,=1 BHIZL DECKS FOR FREAR 21 11 DATA 1 24 11 21 1 21 1 11 Y_{ei} ,001 $\langle \cdot \rangle$ 0001 2.2 1 OZ .001 2200 5. 63 1100 - tra 001 1200 ----- Kyin · 5 · 1.0 1.0 1.0 5.0 0200 1.0 1. 6.0 2.0 1.10 1.0 1.0 2.0 3,0 2.0 1 .. $1, \circ$ 1.0 10 1.0 . 1.0 20

I) NETWORK ANALYSIS

(

A) PARAME TERS
i)
$$E: \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{12}/A_Y & Y_{12}/A_Y \\ -Y_{12}/A_Y & Y_{14} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{12}/A_Y & Y_{14}/A_Y \\ -Y_{12}/A_Y & Y_{14}/A_Y \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{22}/A_2 & Z_{12}/A_2 \\ -Z_{22}/A_2 & Z_{12}/A_2 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} I_1 + & -Y_{12} \\ Y_{12} + & Y_{12} \end{bmatrix} \begin{bmatrix} Y_{12} + & Y_{12} \\ Y_{12} + & Y_{12} \end{bmatrix} \begin{bmatrix} Y_{12} + & Y_{12} \\ Y_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Y_{12} + & Y_{12} \\ Y_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Y_{12} + & Y_{12} \\ Y_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Y_{12} + & Y_{12} \\ Y_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Z_{12}/A_2 \\ Z_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Z_{12}/A_2 \\ Z_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Z_{12}/A_2 \\ Z_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Z_{12}/A_2 \\ Z_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Z_{12}/A_2 \\ Z_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Z_{12}/A_2 \\ Z_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Z_{12}/A_2 \\ Z_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Z_{12}/A_2 \\ Z_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Z_{12}/A_2 \\ Z_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Z_{12}/A_2 \\ Z_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Z_{12}/A_2 \\ Z_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Z_{12}/A_2 \\ Z_{12} + & Y_{12} \end{bmatrix} = \begin{bmatrix} Z_{12}/A_2 \\ Z_{12} + & Z_{12} \end{bmatrix} = \begin{bmatrix} Z_{12}/A_2 \\ Z_{12} + &$$

ġ.

1 I) TESTING FOR POSITIVE REAL $Z(s) = \frac{p(s)}{q(s)} = \frac{m_1(s) + n_1(s)}{m_2(s) + n_2(s)}$ A) ROUTH TEST ON p(s) + q(s) B) STURM TEST ON $m_1(s) m_2(s) - n_1(s) n_2(s)$ C) Z(S) IS REAL IF S IS REAL

III) LC SYNTHESIS (INTERLACED POLES & ZERO'S ON je AXIS) A) CAUER'S 1) FIRST -> REMOVE POLE @ 00 2) SECOND -> REMOVE POLE @ 0 B) FOSTER'S I) TAKE OUT ALL POLES CO & OF Z(S) EXPAND THE REST, & FIND RESIDUES 2) TAKE OUT ALL POLES @O & 40 OF Y(S) EXPAND THE REST, & FIND RESIDUES

$\left(\begin{array}{c} \gamma \\ \gamma \end{array} \right)$		
TAT	RC ELC SYNTHE	515
<i></i>	A) POLES & ZERO'S	INTERLACED ON & AXIS.
	I) IF THE CLOSEST SINGULARITY TO je AXIS	
	IS A POLE => RC (Z(S) POLE)	
	2) IF THE CLOSEST SINGULARITY TO jw AX/S	
	IS A ZERO ⇒RL	(Z(S) 2ERO)
	RC NETWORKS	RL NETWORKS
	$\overline{a}(0) > \overline{a}(\infty)$	7(10) > 7(0)
	Y(m) > Y(n)	Y(a) > Y(a)
	FOSTER:	FOSTER
~	1ST: EXPAND Z(S)	IST: EXPAND Z(S)/S
	2ND: EXPAND Y(S)/S	2 nd : EXPAND Y(S)
	CAUER	CAUER
	AST: EXPAND AROUND	1.ST: EXPAND AROUND
	00 POLES (Rezija)	00 POLES [Rey(00) < Rey(0)]
	2 EXPAND AROUND	2 ND : EXPAND AROND
	O POLES	O POLES
	[Re(Y(0)) < Re(Y(00))]	Re{2(0) 5 < Re 2 2(00) 5
		· · · · · · · · · · · · · · · · · · ·
-1		
· · · · · · · · · · · ·		·
		/

ŝ

W.) THE FOSTER PREAMBLE A) CHECK FOR POS. REAL (SEE II) B) PULL OUT ALL POLES @ O OR 00 [LOR C] C) PULL OUT ALL JW AXIS POLES [LC TANKS] D) CHECK FOR MINIMUM RESISTANCE $Re\{Z(j\omega)\} = Ev\{Z(s)\}|_{s=j\omega} = \frac{m_1m_2 - n_1n_2}{m_2^2 - n_2^2}|_{s=j\omega}$ Re {Y(jw)} = Ev {X(jw)} = m, m_2 - n, n_2 FIND RELATIVE MINIMA, AND CHECK Q jw=0 \$ jw=00 TAKE OUT THE MINIMUM THE REMAINING FUNCTION 15 A MINIMUM FUNCTION.

VI) BRUNE'S METHOD A) Z(S) MUST BE A MINIMUM FUNCTION (FILTERED THRU THE FOSTER PREAMBLE) B) Re [Z(jw,)]=0 $\Rightarrow Z(j\omega) = jX$ L, C) REMOVE $F = \frac{X}{\omega_1}$ Y2 D) LEAVING: $Z_{\mu}(s) = Z(s) - sL_{\mu}$ YI(S)= YZI(S) HAS A POLE @ ± ; w, $\Rightarrow Y_1(s) = Y_2(s) + \frac{2ks}{s^2 + \omega_1^2}$ ALSO $L_2 = \frac{1}{2} d(Z(S) - S)$ $Y_2(S)$ EL2= 2K = C2 = 2 k/w, 2 E) $Y_2(s) = Y_1(s) - \frac{2ks}{s^2 + \omega_1^2}$ Z2(S)= 1/Y2(S) HAS A POLE @ 00 $L_3 = \frac{-L_1L_2}{L_1 + L_2}$ LEAVING LI L3 8880 Zs Mala ELS=L2+L3 23(5)

VII) BOTT-DUFFIN $R(s) = \frac{kZ(s) - SZ(k)}{kZ(k) - SZ(s)} \quad (RICHARD'S FUNTION)$ OR $\frac{R(s) k Z(k) + s Z(k)}{Z(s)^{2} k + s R(s)}$ $= \frac{1}{2(K)R(S)} + \frac{S}{KZ(K)} + \frac{1}{Z(K)} + \frac{R(S)}{Z(K)} + \frac{1}{Z(K)}$ $T \qquad T \qquad \uparrow \qquad Z_{i} = Z(k) R(s); C_{i} = KZ(k); L_{i} = \frac{Z(k)}{K}; Z_{2} = \frac{Z(k)}{R(s)}$ - 2, AGAIN: Re[Z(jw,)]=0 ⇒ Z(jw)=jX A) CASE A; X IS POSITIVE FORCE R(S) TO HAVE & -AXIS POLES: $R(s) = \frac{(s^2 + \omega_i)^2(j)}{(s^2 + \omega_i)^2(j)}$ $\Rightarrow R(j\omega_i) = 0 \Rightarrow j\omega_i Z(k) = k Z(j\omega)$ OR LIZ W. SOLVE FOR K FROM: Z(k) = kLFIND Z(K) SOLVE FOR C, = KZ(K)

 $Z_1(s) = Z(k)R(s)$ HAS A ZERO $\mathcal{Q} \pm j\omega$, $Z_2(s) = Z(k)/R(s)$ " " POLE $\mathcal{Q} \pm j\omega$, $\Rightarrow Y_{1}(s) = \frac{k_{1}s}{s^{2} + \omega_{1}^{2}} + Y_{3}(s)$ $Z_2(s) = \frac{k_2 s}{s^2 + \omega_1^2} + Z_4(s)$ $C_3 = \frac{K_1}{\omega_1^2}$ L3 = 1/K, Ly= Ka/w,2 C4 = 1/K2 64 23(5) C3 C, B) CASE B: X<0 USE SAME PROCEDURE, BUT WITH Y

<u> 2</u>(1) 2 LADDER DEVELOPMENT PORT TRANSFER DEFINITIONS: Pg 46 Pg 35 Pg 258 Pg 260 Yij \$ Zig DEFINITIONS Giz PROPERTIES -YI2 PROPERTIES 265 ZERO SHIFTING 260 LC LADDER 277 RC LADDER GIVEN GIZ 287

IX) LATTICE Zq G 20 Z1= 1(Zq+Zb)=Z22 212= 2(26-29) Za= Z11-Z12= Z22= Z12 26 - 211 + 212 - 222+ 212 $Y_{12} = Y_{22} = \frac{1}{2}(Y_A + Y_b)$ $Y_{12} = \frac{1}{2}(Y_B - Y_A)$ YA = Y11 = Y12 = Y22 - Y12 YB= Y11 + Y12 = Y22+ Y12 BARTLETT'S BISECTION THEM FOR SYM.NET. $Z_b = Z_{y_2}(o.c.)$ $Z_0 = Z_{y_2}(s.c.)$

1

IN) CONSTANT R Z11 Z12 Z21 Z21 N. TO SEE R: $Z_A Z_b = R^2$ $Z_a = \frac{R - Z_{12}}{1 + Z_{12}/R} \notin Z_b = \frac{R^2}{2A}$

i

2 - 1 - 2 0 - 1 - 2

Ę() Š Ś \sqrt{n} 0 \mathcal{O} 11 15 10-1 + 2/4 the fort and a te he K 101 The second of the second of the second se - 1 + 11-Sal 1. 4. N. ().) 101 तेलीन पहि A Star and a star on ol Winds whe V-V. ang . Autor St Ma ala St. î ţ 5/41 -www + N N N Z i di $(\land \neg \land)$ 6 4 11 : V 11 (-) I 1 h K X-1 11 30 (a) (23) \leq $\langle \gamma \rangle$ 4

V $\langle \rangle$ 3578-6 0 0 0 0 1 0 1 0 ()1681 $\langle 0 \rangle$ ٥ ()35100 -{@ 27 <u>к</u>() 500 V S. 0 \mathcal{V} MI 88 19) (1 7 N Site $\langle \rangle \rangle$ \geq 163 3 Elsing 28 -<u>8</u>---4 0 m M $\langle \rangle$ CR HER N'N' and Meridian MN Ц 1 -f" 3518 $\langle \rangle$ V ns V $\langle n \rangle$ s. M ζý -4- $\langle 0 \rangle$ 55+165361 20 6,559+18,552+2 () () 10 + 0 |10 + |4 0 5 S² n' \bigcirc \bigcirc esseige শুধ .9 00 NA aan aan a 44 5 4 4 2 5 4 4 4 2 5 5 4 4 2 5 5 4 4 4 2 5 5 4 4 4 5 5 4 4 4 5 5 4 4 (1)~\$ าหลูโต Ţ, \mathbb{V} -20 012 20 \mathbb{N} ¢\$ al 2-351X 262 -0 (V) 05 N. ÷ 3 V) \mathcal{C} Hr N m 10/200 -27 00 b) y(s)= 81 $\langle n \rangle$ y les 4-5) 0) 55+ 00 USING ln V) ф (У -cire A r! 64 sie de la companya de $\langle 0 \rangle$ Ś $\langle V \rangle$ V)

04.40 この文語を S \bigcirc lixt M N -N N C' A L ×2+2× - X - 3 X × 3- 3× 3-× + XX - FX n) Q e de V -di B 5 + 2 2 + 3 n O Allowed and a second -[N] $\{ \forall \}$ $\langle u \rangle$ 1000 *) *) * P. (X) = 10 X - 10 Sea China 10 20 20 X elp * * × * * * \propto 30 1 1 N ц Ц L ~ X 2 and the second sec $\langle \langle \langle \rangle \rangle$ V X \mathbb{A} M o ca X Q Q CTALL) a.J \sim e f Ö - $\langle \eta \eta \rangle$ 16 Ovi W X n K ş 11 11 S \mathcal{E}^{e} Poch Poch E (x) S (b (Zi-17 9

	A COUNTER SHALL THE THE SHALL THE SH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Rex Parts (X = X = X = X = X + 2 (X = X + 2 (X = X + X = X + X = X + 2 (X = X + X = X + 2 (X = X +	
((. ((

$\frac{Su + (S + 7 + 7 + 3)}{S^{4} + 2S + 4} = \frac{p(s)}{q(S)}$	53 2 9	5 2 7 4 5 5 7 0 0	S° 4 V(S) 15 REAL WHEN S IS REAL	=> P(S) IS STRIOTLY HURWITH = 65" + 3= - 60"+3; n,= 5" + 15 = 1 (-10)	1 Sut 1= -W2+1 SN212 25 = 1,200	$\omega^{2}) = m_{1}m_{2} = n_{1}n_{3}$ $= (-c\omega^{2}+3)(-\omega^{2}+4) + 2\omega(-\omega^{2}+7\omega)$	= 60 4 - 602 - 300 2+3 - 200 + + 14 10 2	-601+504+W X) -6X4+5X+W VO FOR 411 X	U POSITIVE REAL FUNCTION	
 d (0 (61-H	-		1	E.	Ç.	4 < 4		0°		

 \mathcal{N} (0|n)т N} 12 m Q. + N 1 N V + 5 S S(25 +5 W Ø + 3)(S + N + 1 5 \bigcirc + \mathcal{V} N)JJ (0) 4 10 (\mathcal{O}) Ó \mathbb{N} MM 11 Ello. 4 1 y maa suuda m VV xlipso U A Star ¥ (V) 10[0] 2 V9 TRA. Ň M 对国 No. 14 11 11 19 19 19 Q K Ĵį. ļ. 1 "Byre ιį lo Vo \mathbb{C} kaj VOj 1000 a (V) [e/[e] kala. No -61 N N H + M N N + 4 M + 4 N J n + N V う 11-1-1-1 1-1-1-1 1-1-1-1 1-1 11 で) + く -11 11 11 11 11 11 11 11 \mathcal{O} 10 + 10 11 10 + 10 11 10 10 11 9 N 2/4 M 25 2 + 6 V) 12 + ST ζ_i^j ela 5(32"+ 5) (5+jB)(5"+1 $S(23^{2}+5)$ $(5^{2}+3)(5t;)$ $\langle \cdot \rangle$ \bigcirc $\frac{1}{2}$ FIRSS т Г $\langle \rangle$ (\mathcal{A}) 000 . Series + 50 11 N † 1232 POLES $\langle f \rangle$ ę \$ CING No. 1 (C) N Q . $\langle \gamma \rangle$ -----Contraction of the second 11 QQ FOSTER 9 . S M 100 20 7 0 1 0N n h

- 5 δ N) h[m -11 (V) © 0 м ф 0 4 0 4 $\langle \rangle$ 53+25 $(\boldsymbol{\theta})$ " " N Q 49 10 19 ~ ~ 54+45 V) 2152 POLES 8 (\mathbf{n}) 0 4 \sim mld 3 1-12 4 0 ÷ + M ÷ 7 N N N + 20 0 11 154 2 A C A C d ÷. 22 + 5 CM 1 1 4 m we 11 0 4 1 4 3 11 s N 介 1 4 4 ÷ 0 m) л Л 25+25 + 24 Ma n se 54+2) 11 (52+1) (52+ M 5 2+2))(5+2/2)) \mathcal{G} -(52+3) N N T 2542 S s S Sut 2S 2450 + С 19 4 19 Ļ 4 个 Vì ſσ S 5 S S 4 S 22 ÷ r M 7 7 7 $\widetilde{\mathcal{Q}}$ 0 10 66 B =(<u>5 * 1)</u> 11 5 7 (s) 1 Y (5) = 15 Ó N N Ś Ô 20 → Z(S) # 11 66 4 b) Y (5) = POLE @ 00 衽(S)= $(5 \cdot 2)_{a} = (5)_{a}$ 介 介 介

.

.

5-4)

: 1

(

Ć

Tw/ Tw/ NECOND NECOND T SSA Cold Constrained N N Journel Character SECOND: SECOND: CAUER'S FIRST. *8 CLUERS × ----× Ó CAUERS And a second second 1105 fw 9 CAURK S Q CAUERS ÚŤ CACIED N -X fw) j to and the second nalisesso nalisesso γ (s) á Q WW Q 3 ð k L ò 0 Ś Ŷ Ŷ SECOND. **-9**-8 *8 SECOND: \bigcirc FIRST' E COND ; FOSTER'S FIRST: "les || -wh LOWING TRANS *0 -unl ter] POSHER'S W's -iudf-× O Teer}} ROM HING W FOSTER'S Tur 1 S () and () × Å russ c) × his Q. ð 5-14) a) \bigcirc

, ' í FOSTER'S SECOND'

0-2022-1-0

CAUGR'S SECOND: \bigcirc Ŷ - Aller

5-16) a)

Ó

FUNCTION U X Â and the second \leftarrow H(20)+7 ß ß AR 1 + 5 16 S * + > S + _ O M \odot 52+45+ (1 (1) (1) + V) POLE ž? 22355 (%) | 4 | {\} 35+7 (5+1)(5+3) 5+1 + ______ • 5 03 |4-|5-介 \sim ~f~ \sim 1000 1000 1000 2 14 14 F1257: 52+15+10 52+45+3 -6-19 4 10 (5+2)(5+5) (5+1)(5+3) SINGULARTY ÷ and Marine Marine 2 \mathbf{J} 6 1 °í--fin N V1 ~~∥ Carter attigere 18 (S) HI B (1 (S) N N X M X NOY 福泉 ðĒ - Class and a X(S) LOW EST (-3)a) % (2) = \circ A

Ł

40 (q 40 (q

1 esta seguina + M M n TwoW V 1 9 4 V 4 n V) N) 54 S +1)(5+4) er M n n m m www $[m]^{b}$ 7 + 5 4 5 4 5 st V ÷ |V l_{Ω} (n) 4-2 区 1 4 4 + 4 4 4 N ri ww 8 12 -fe 5 ~ 1 (S) 1 I Í ч (?? Ô Q 寶島 f 3 Jam $\hat{\mathcal{A}}$

.....

.

alu alu alu 2 and the second $\stackrel{\text{N}}{\sim}$ and the second s Contral Incontral V $\langle f \rangle$ V 4 S / s. Z N N N Me zmps Ś S \bigcirc 4 Received for the second alar Na - <u>8</u>-0 6 6 Sec. eilean S 企 40.2-00.259 V N 78 (- WY С 4 NE NE 357+ 25 SECOND \bigcirc 10 N N N N V 68 V (N N 2 Q (V) (V) N N N at Vi M and the second second (N - Constant alge: 1 1 1 1 V CAURR'S V) N N.S.S. N 2010-21-\$ Ó 0 H $\widehat{\Box}$. 2000

 $\frac{(5+1)(5+3)}{(5+2)(5+4)}$ = Y12 (5) = (5+2)(5+4) Y22 = 10-19) 00 - Y12 * 10 4 0-1Y22 X z 0 3 \checkmark × + = 1/422 FT POLE TO 00(s+2)(s+4) $Z,(s)=(s+1)(s+3) \Rightarrow Z,(00)=1$ SHIFT $\frac{z_{2}(s) = z_{1}(s) - 1}{(s^{2} + 6s + 8) - (s^{2} + 4s + 3)}$ $= \frac{(s^{2} + 6s + 8) - (s^{2} + 4s + 3)}{(s + 1)(s + 3)}$ $= \frac{2s + 5}{-(s + 1)(s + 3)}$ X-1Zz 0 X -0---512 ∞ 4 * -Y-Ó $\begin{array}{rcl} REMOVE & co & POLE \\ S^{2} + 45 + 3 \\ Y_{2} = & 25 + 5 \end{array}$ 145+3 25+5 5 * 5 -5+3 3/25+3 35+6 45+10 63300 63500 ¥3(5)= 5/4 1/2 x 1Z3 4/3 mm 7 0 TO 00 Z3(5)= 35+6 > SHIFT $Z_{3}(\alpha) = \frac{4}{3}$

ã

74(5)= 35+6 35+6145+10 <u>45+8</u> 2 ≥Z4(5)= 2 35+6 X 1 Z 4 1/2 Θ \mathcal{O} REMOVE POLE $(2, \infty)$ 3/3512/35+6 2^{-1} X 4/3 Ġ Y5=3 175 1/3 mn 4/2 3/2 0

 $-Y_{12} = \frac{(s + 5/2)(s + 9/4)}{(s + 2)(s + 4)}$ 10-21) $Y_{22}(5) = \frac{(s+1)(s+3)}{(s+2)(s+4)}$ - Y 12 @-0X 5/29/4 Y22 \mathcal{O} ė 122 9/4, BY PARTIALLY ZERO 70 SHIET REMOVING POLE @ (S+2)(S+4) 3 (s+1)(s+3) 2 2 3 $\frac{K}{Z_3 = Z_2 = 5+3}$ $Z_3 \left(-\frac{9}{4} \right) = 0$ Z2 (- 2) = 7/15 K 5+3 | 5=-9/4 = 3 k $= 0 = \frac{7}{15} - \frac{4}{3}k \Rightarrow k = \frac{7}{20}; \frac{7}{5+3} \Rightarrow \int_{-1}^{20/7} \frac{1}{15} - \frac{1}{3}k \Rightarrow k = \frac{7}{20}; \frac{1}{5+3} \Rightarrow \int_{-1}^{1} \frac{1}{15} \frac{1}{15} + \frac{1}{20} \frac{1}{5+3} = \frac{1}{20} \frac{1}{15} + \frac{1}{20} \frac{1}{15} + \frac{1}{20} \frac{1}{15} = \frac{1}{15} \frac{1}{15} + \frac{1}{15} \frac{1}{15} \frac{1}{15} + \frac{1}{15} \frac{$ FLIP & SHIFT

BOB MARKS

EZ 532 NETWORK SINTHESIS I

S0-Rinute Exer.

Oct. 3, 1972 Open Books

 Determine whether or not the following functions are positive real functions of S.

a) = \$ + 2 s³ + 5s² + 6s + 7 (NO) P(S)>q(S) IN DEGREE OVER 1 10

b) $s^{2} + 4s(2)^{3}$ (NO) (-) COEFFL $s^{2} + 5s + 6$ (a) $\frac{4}{5} + \frac{3}{58^2} + \frac{3}{4} (NO)$ MISSING PWP OF S $\frac{3}{1} + \frac{3}{58^2} + \frac{12}{12}$ $\frac{900}{158}$ PWP OF S $\frac{900}{158}$ PWP OF S 10 DOUBL DAX DOLES (3 + 2)(5 + 4)(52+5) (5+2)(5+1)(5+1)(5+1)(5+5) > POLES EROS SNOT. P.R. SNOT. P.R. (221) B) 3 + 45² + 3 => POSITIVE REAL Ô 1) <u>s³ + 2s² + 5</u> >> POS REAL s² + 2s + 1 a) 32 + 58 + 6 > POS REAL; FAILED STURM?

h) $3^{3} + 28^{2} + 28 + 2$ $3^{4} + 48^{3} + 58^{2} + 38 + 4$ P(5) + q(5) NOT STRICTATION10

 $\frac{3}{12} + \frac{5}{12} + \frac{2}{12} + \frac{6}{12} + \frac{1}{12} \Rightarrow Pos REAL$ 10

EE 532 NETWORK SYNTHESIS I - Exam

2. Determine the driving-point impedance as a ratio of polynomials.

 $\binom{5^{4}+45^{2}+3}{5(5^{2}+2)}$ P(s)+q(s)=5"+5"+45"+25+3 1 4 3 54 5³ 1. 2. 0 5 2 3 0 5' 1/2 0 50 3 STRRM: A(WZ)= 0 204W $A(\omega^2) = (5^4 + 45^2 + 3)(0) = 0$ 51 <u>20</u> 50 <u>1</u>

STURM $A(\omega) = (257)(5741) - (575)25$ = 234 + 257 - 284 - 1057 $= -857^{2}$

> A(w2)=-8(jw)2=8w2204w

Po(x)= @ x3-3x2+9x+20 $P_1(x) = 3x^2 - 6x + 9$ 3X²-6X+9/X²-3X²+9X+20 X³-2X²+3X - X= +6X+20 - X24 2X -3 4X+23 $P_{2}(X) = -4|X - 23|$ 69 -4x-23)3x2-6x+9 3x2+4x -(6+ 9) X + 9 -(6+ 9) X + 23(6+ 9) -(6+ 9) X + 23(6+ 9) $9+\frac{2.3(6+69)}{4}=-P_{3}$ >P3 = - (9+ 23(6+ 42)) Ko Pi Piz Piz to to more thank 11-1) = 0 BUREAL O'S TWIXT OS INFINIT

EE 532 Network Synthesis I

Oct. 19, 1972

Nour Exam No. 2

()

2. 6 2. 1. 1 a) Use the first Cauer's expansion (about infinity) to obtain the driving point admittance

 $\frac{2}{Y(s)} = \frac{2}{s^2} + \frac{6s}{s^2} + \frac{5}{s^2} + \frac{12}{s^2} = \frac{12}{s^2 + 6s + 12} = \frac{12}{s^2 + 6s + 12} = \frac{12}{s^2 + 6s + 5} = \frac{12}{z(0)} = \frac{12}{s^2 + 6s + 5} = \frac{12}{s^2 + 6s$

b) Use the second Foster method to obtain the same driving point admittance as above.

$$Y(s) = \frac{s^{2} + 6s + 5}{s^{2} + 8s + 12}$$

$$\frac{Y(s)}{s} = \frac{s^{2} + 6s + 5}{s^{2} + 8s^{2} + 12s} = \frac{4}{s} + \frac{8}{(s^{2} + 2)} + \frac{(1+6)}{(1+6)} + \frac{1}{2s}$$

$$\frac{Y(s)}{s} = \frac{s^{2} + 6s^{2} + 12s}{s^{2} + 8s^{2} + 12s} = \frac{5}{12s} + \frac{1}{(1+6)} + \frac{32}{12s}$$

$$\frac{5 + \frac{10}{12} + 5}{12s} + \frac{5}{12s} + \frac{5}{12s} + \frac{5}{12s} + \frac{32}{12s} + \frac{5}{12s} + \frac{32}{12s} + \frac{5}{12s} + \frac{5}{12s} + \frac{32}{12s} + \frac{5}{12s} + \frac{1}{12s} + \frac{1$$

4. Use Foster's First method to realize the impedance

$$2(s) = \frac{3(s^{2} + 3)}{(s^{2} + 2)(s^{2} + 4)} \Rightarrow LC$$

= $\frac{s^{3} + 3s}{s^{4} + 6s^{2} + 8} \Rightarrow NO POLES @ O R OO$

(

4

EE (32 Network Systhesis I Take-Home Exam Nov. 2, 1972 Due Konday Noon, Nov. 13, 1972

For each of the problems:

- a) Determine whether or not the function is positive real.
- b) If the function is positive real, determine a network realization using the stendard techniques such as:
 - 1) the Foster preamble
 - 2) recognition as HC, RL, or LC type of function
 - 3) resistance (or conductance) minimization
 - 4) Brune or Bott-Duffin procedure
- c) Check your network by working backwards to determine the driving-point impedance or admittance of your network.

Your solutions must be submitted in log-book form with headings and statements or commants to enable your procedures and results to be easily understood.

100

The following statement must be signed:

I certify that I have neither given nor received aid from another person on this examination.

Robert J. Marho TT

- He - An ang alif - An ang ang ang

"" If positive real determine a Bott-Duffin network realization of the driving-coint impedance function:

$$\frac{5^{\prime\prime}+25^{\prime\prime}+35^{\prime\prime}+5+1}{5^{\prime\prime}+5^{\prime\prime}+35^{\prime\prime}+35^{\prime\prime}+5+1}$$

9. If positive real, realize the following driving-point impedance by the Brune procedure.

$$\frac{45^{9}+35^{3}+75^{3}+45+2}{5^{9}+5^{7}+5^{7}+5+2}$$

10% A Bott-Duffin realization for a drive the impedance is shown. Determine the realization for Z fs)

ų.

1)
$$Y(s) = \frac{5+2}{3^2+2.5+4}$$

a) POSITIVE REAL? YEST IS REAL IF S. IS REAL
ROUTH TEST ON AGAILD.M
NUM + OTHE S'T 3516
 $s^2 - 4 - 6$
 $s^2 - 4 - 6$
 $s^2 - 3 - 5$
 $s^2 - 6$
 $s^2 - 6$
 $s^2 - 6$
 $s^2 - 6 - 5^2 - 6^2 - 5^2 - 6^2 - 6^2 - 6^2 - 6^2 - 6^2 - 6^2 - 6^2 - 6^2 - 6^2$

{

Ś

2)	$Y(5) = 25^{2} + 65 + 6$
· · · · ·	
	A second s
•	
	a) POS. REAL?
	1)NUM + BEN= 352+65+6
	15 ⁻² - 3 6
	5° 6
	=> STRICTLY HURWITZ
	2) $A(s^2) = m_1 m_2 = n_1 n_2$
	$= (5+2)(25^{2}+4) = (0)$ = 25 ⁴ + 85 ² + 8 04 = 2) = 0(-2) =
	$A(\omega) = A(S) = 2\omega = 2\omega = 8\omega = 8$
·	$= 2(X^{2} - 4X + 4)$ $= 2(X^{2} - 4X + 4)$
	3) Y(S) IS REAL WHEN S IS REAL
	> TCS) 15 POSITIVE KERE

(

 Γ_{1}

ë.

• »

(

. .

Ś

DEN HAS MISSING ODD TERM AND ZNUM & DEN DIEFER BY POWER OF 4) Y(s) = 54 + 552 + 6 2 => NOT POS. REAL. SHOWN ANALY TICALLY: 1) STURM TEST: $A(s^2) = m_1 m_2 = n_1 n_2$ = (352)(54+552+6) = (0) = 3 [56+554+652] $A(\omega^2) = A(s^2) \int_{s=j\omega}^{s=3} \left[-\omega^6 + 5\omega^4 - 6s^2 \right]$ $P_{o}(x) = A(\omega^{2})|_{w^{2}=x} = 3[-x^{3}+5x^{2}-6x]$ = $-3x[x^{2}-5x+6]$ = -3x(x-2)(x-3) Po(4) = -12(2)(1) = -24<0 >Y(s) IS NOT POS. REAL

5)
$$Y(s) = \left(\frac{s+1}{s+2}\right)^2 = \frac{s^2+2s+1}{s^2+4s+4}$$

a) pos real?
i) NUM + OEN = $2c^2 + 6s+s^2$
 $s^2 = 2$
 $s^2 = 5$
 $s^2 = 5$

t

(

FIND MINIMUM:

$$R_{2} \left[Z(j, \omega) \right]_{\omega^{2} = x}^{2} \frac{x^{2} + 3 x + 4}{(x + 1)^{2}} = \frac{p}{q}$$

$$\frac{d R_{0} \left[Z(j, \omega) \right]}{dx} = \frac{q p' - q' p}{q^{2}} = \frac{(x + 1)^{2} (2x + 3) - 2((x + 1))(x^{2} + 3x + 4)}{(x + 1)^{2}} = 0$$

$$\Rightarrow (x + 1) (2x + 3) - 2(x^{2} + 3x + 4) = 0 ; x \neq -1$$

$$(2x^{2} + 5x + 3) - (2x^{2} + 6x + 8) = 0$$

$$+ 5x + 5 = 0$$

$$M_{1}N? (P) = x = 1 \Rightarrow \omega^{2} = -1 \Rightarrow \omega^{2} j$$

$$R_{0} \left[Z(j, \omega) \right]_{\omega^{2} = -1}^{2} = 0$$

$$R_{0} \left[Z(j, \omega) \right]_{\omega^{2} = -1}^{2} = 0$$

$$R_{0} \left[Z(j, \omega) \right]_{\omega^{2} = x = 0}^{2} = -1 \iff M_{1}N R_{0} \left[Z(j, \omega) \right]$$

$$CHECK R_{0} \left[Z(j, \omega) \right]_{\omega^{2} = x = 0}^{2} = -1 \iff M_{1}N R_{0} \left[Z(j, \omega) \right]$$

$$SO \ LET'S \ TAKE \ OUT \ AN \ OH \ M$$

$$S^{2} + 2.5 + 1 \left[S^{2} + 4S + 4 \right]$$

$$S^{2} + 2.5 + 1 \left[S^{2} + 4S + 4 \right]$$

$$S^{2} + 2.5 + 1 \left[S^{2} + 4S + 4 \right]$$

$$S^{2} + 2.5 + 1 \left[S^{2} + 4S + 4 \right]$$

$$S^{2} + 2.5 + 1 \left[S^{2} + 4S + 4 \right]$$

$$S^{2} + 2.5 + 1 \left[S^{2} + 4S + 4 \right]$$

$$S^{2} + 2.5 + 1 \left[S^{2} + 3 \right]$$

$$Z(s) = 1 + Z_{i}(s)$$

$$\exists Z_{i}(s) = \frac{2s+3}{5^{2}+2s+1}$$

$$\exists Z_{i}(s) = \frac{3^{2}+2s+1}{2s+3}$$

$$HAS A POLE @ 00$$

$$\frac{2s}{2s}$$

$$2s+3 \int s^{2}+2s+1$$

$$\frac{5^{2}+3s}{2s+4}$$

$$\frac{5^{2}+3s}{2s+4}$$

 $\Rightarrow Y_{1}(s) = \frac{1}{2}s + Y_{2}(s) = \frac{Y_{1}(s)}{S+2}$ $Z_{2}(s) = \frac{1}{2}s + \frac{1}{2}s +$

54+453+452+45+3 54 + 653 + 952+65+8 (ARG!) 6) Z(S)= a) POS. REAL? NUM + DEN = 254 + 1053 + 1357 + 105 + 11 s4 2 13. 11 53 10 10. -> 5² + 1 11 52 1.1 5 Ô 50 (52+2)? COMMON FACTOR OF $s^{2}+4s+3$ $s^{2}+1)s^{4}+4s^{3}+4s^{2}+4s+3$ 54 4 52 453 +352+45+3 453 + 45 352 n fa 2 352 + 3 Q $5^{2} + 65 + 8$ $5^{2} + 1 + 65^{3} + 95^{2} + 65 + 8^{2}$ $5^{4} + 5^{2}$ $65^{3} + 85^{2} + 65 + 8^{2}$ 65⁸ 45 852 + 8 852 482 \mathcal{O}

YEP!

$$\Rightarrow Z(s) = \frac{(s^{n}+1)(s^{n}+4s+s^{n})}{(s^{n}+4s+s)}$$

$$\Rightarrow Z(s) = \frac{(s^{n}+1)(s^{n}+4s+s^{n})}{(s^{n}+4s+s)}$$

$$= \frac{s^{n}+4s+s}{(s^{n}+s+s)}$$

$$= \frac{s^{n}+4s+s$$

$$\frac{5^{4}+25^{3}\pm45^{3}\pm35^{6}1}{32^{3}+25^{3}+25^{4}+25^$$

(

.

$$P_{o}'(x) = x^{2} - x + 2$$

$$P_{1}'(o) = \frac{d}{d} \frac{P_{o}'(x)}{x} = 2x - 1$$

$$\frac{1}{2}x - \frac{1}{4}$$

$$2x - 1 \quad \frac{1}{2}x - \frac{1}{4}$$

$$\frac{1}{2}x - \frac{1}{4}$$

$$\frac{1}{2}x + \frac{1}{4}$$

$$\frac{1}{2}$$

,

[

18

PREAMBLE (CONT.) 54+253+452+35+1 54+253+352+25+2 b) FOSTER 2(5)= POLES C 0 6R 00 NO POLES ? j-AX IS DEN, ROUTH ØN 54 3 1 2 53 2 2 «- (s2+1) 5 3 2 A 51 C S 0 2 DEN FACTORING 52+25+2 52+1/54+253+352+25+2 国际 54 2 5 263 + 252 + 25 + 2 253 25 252 2 25 60) 60 $Z(s) = \frac{s^{4} + 2s^{3} + 4s^{2} + 3s^{2} + 3s^{2} + 1}{(s^{2} + 1)(s^{2} + 2s + 2)} = \frac{2As}{s^{2} + 1} + Z_{1}(s)$ 54+253+452+3541 25(52+25+2) - 2 Sej A = (REALLY!) $\Rightarrow Z(s) = \frac{s}{s^2+1}$ + Z,(S) 10000

(
	5	
	Z, (S) = Z(S) = S211 	e e e e e e e e e e e e e e e e e e e
	(52+1)(52+25+2) 54+253+452+20+1)-(53	<u>524</u> 12521232
	(52+1)(52+25+2) 54+53+252+2+1	
	$= (2^{2}+1)(2^{2}+22+2)$	
		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		
	5 J L J S J O + 23 + 5 +	· · · · · · · · · · · · · · · ·
	e 3	
	2	· · · · · · · · · · · · · · · · · · ·
ан сайнаан Т	e 2 g	l
		· · · · · · · · · · · · · · · · · · ·
	$3^{2} = (3) = 3^{2} + 2 + 2 = 42$	
	NO OR ORIAVIS POLES. SO TA	RE OUT A RESISTOR.
		IF Z,(S) ISN'T MINIMOM
		• • • • •
	n men en e	a a sa a a a a a a a a a a a a a a a a
	100 °	

Since MINIMIZING
$$P_{0}[Z(\zeta;\omega)]$$
 became HAIRY, LET'S Look $P_{0}[Y(\zeta;\omega)]$
 $Y(\zeta;v) = P(\zeta;v) = \frac{P_{1}(\gamma_{0})}{P_{1}(\gamma_{0})} = \frac{P_{1}(\gamma_{0})}{P_{1}(\gamma_{0})} = \frac{P_{1}(\gamma_{0})}{P_{1}(\gamma_{0})} = \frac{P_{1}(\gamma_{0})}{P_{1}(\gamma_{0})} = \frac{P_{1}(\gamma_{0})}{P_{1}(\gamma_{0})} = \frac{P_{2}(\gamma_{0})}{P_{1}(\gamma_{0})} = \frac{P_{2}(\gamma_{0})}{P_{2}(\gamma_{0})} =$

SO TAKE OUT A MHO

۹. F

'n

(

$$Y_{1}(s) = \frac{s^{2} \cdot 2s + 2}{s^{2} + s + 1}$$

$$S^{2} + s + 1 \int s^{2} + 2s + 2$$

$$S^{2} + s + 1$$

$$S^{2} + s + 1$$

$$S^{2} + s + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 \int s^{2} + 1 = s^{2} + 1$$

$$S^{2} + 1 = 1$$

$$S^{2} + 1 = s^{2} + 1$$

$$S^{2}$$

53 524541 435 2+25+1 8) Z(S)= 54 5 B REAL ? a) POS. 254+35 65 NUMFDENS 54 2. 53 3 2 52 han N.S. 51 5 4 2 2) ALSEDE M. M2 - DIN2 = (54+352+1) (54+352+1)= (253+5) (52+25) =(58+356+54)+(356+954+352)+(54+352+1) (256+554+252) , Billa = 58+456+654+452+1 $A(w^2) = A(s^2)|_{s=jw} = w^s = 4w^6 + 6w^4 - 4w^2 + 1$ PO(X)= A(W2) W2=x = x4-4x346x2-4x+1 = (x-1) 4 20 4 x MEAL FOR S REAL 3) 765) 13

2. Z(S) IS POS REAL

b) FOSTER PREAMBLE (CONT.) . 1) J. AXIS POLES ? ROUTH ON NUM 5 4 2 2 . 5/2 52 Ve 51 50 ROUTH ON DEN 54 2. 5 5 2 5 8 51 50 => NO AXIS POLES EMHER POLES ÓR 2) NO Q 3) MINIMUM RI $m_1 M_2 - n_1 n_2$ $m_2^2 - n_2^2$ Re [Z(jw)] = Eur [Z(s)]s=jw= $m_1 m_2 - n_1 n_2 |_{s=j\omega} = A(\omega^2) FROM STURM TEST$ $A(\omega^2) = (\omega^2 - 1)^4 = 0$ FOR $\omega = 1$ => Re [2(1)]=0 : Z(S) IS A MINIMUM FUNCTION AS GIVEN

c) BOTT - DOTE [M]:
$$E(S) = E(S) = KZ(S) - SZ(K)$$

D) $Z(S) = \frac{R(S)KZ(K) + SZ(K)}{K + SR(S)}$
 $Z(S) = \frac{1}{K + SR(S)} + \frac{1}{KZ(K)} + \frac{1}{SZ(K) - + SR(S)}$
 $= \frac{1}{Z_{1}(S)} + \frac{1}{Z_{2}} + \frac{1$

, (

$$R(s) = \frac{K \times Z(s) - s \times Z(k)}{K \times Z(k) + s \times Z(s)}$$

$$= \frac{Z(s) - 3}{1 + S \times Z(s)}$$

$$= \frac{Z(s) -$$

,

(· · ·

(

THEN:
$$R(s) = \frac{(s^2 + 1)(s^2 + s + 1)}{(s + 1)^4}$$

LET'S GET OUT THE LC TANKS:
1) $Z_2(s) = \frac{Z(k)}{R(s)} = \frac{(s + 1)^4}{R(s)} = \frac{(s + 1)^4}{(s^2 + s + 1)}$
 $\frac{(s + 1)^4}{(s^2 + 1)(s^2 + s + 1)} = \frac{2As}{s^2 + 4} + Z_4(s)$
 $\frac{(s + 1)^4}{A = 2S(s^2 + s + 1)} = \frac{(j + 1)^4}{s^2 + 3} = \frac{(j + 1)^4}{(j^2 + 1)^4} = (\frac{-2}{(-2)}) = 4$
2) $Y_1(s) = Z_1(s) = Z_1(s) = Z(k)R(s) = \frac{1}{R(s)}$
 $\therefore Y_1(s) = Z_2(s) = \frac{2s}{s^2 + 1} + Y_3(s)$
AND $Y_3(s) = Z_4(s) = \frac{1}{S^2 + 2s}$
So, TO PATE:
 $Y_2 = \frac{1}{2}$
 $Y_2 = \frac{1}{2}$
 $Y_2 = \frac{1}{2}$

-00000

AGAIN
$$Z_{2}(s) = \frac{2^{n}}{s^{2}+1} + Z_{2}(s)$$

 $= \frac{2^{n}}{(s^{2}+1)^{n}} - \frac{2^{n}}{s^{2}+1}$
 $= \frac{(s+1)^{n}}{(s^{2}+s)^{n}} - \frac{2^{n}}{s^{2}+1}$
 $= \frac{(s+1)^{n}}{(s^{2}+s)^{n}} - \frac{2^{n}}{s^{2}+1}$
 $= \frac{(s^{2}+1)^{n}}{(s^{2}+1)(s^{2}+s+1)} - 2^{n}(s^{2}+s+1)}$
 $= \frac{(s^{2}+1)(s^{2}+s+1) - (2s^{2}+2s^{2}+2s^{2}+1)}{(s^{2}+1)(s^{2}+s+1)}$
 $= \frac{(s^{2}+1)(s^{2}+s+1)}{(s^{2}+s+1)}$
 $= \frac{(s^{2}+1)(s^{2}+s+1)}{(s^{2}+s+1)}$
 $= \frac{(s^{2}+1)(s^{2}+s+1)}{(s^{2}+s+1)}$
 $= \frac{(s^{2}+1)}{(s^{2}+s+1)}$
 $= \frac{(s^{2}+1)}{(s^{2}+$

()

()

(

HOPEFULLY, THERE'S A COMMON FACTOR : 5+1 5++53+352+25+1)55+254+453+552+35+1 5 + 5 + + 35 3 + 25 2 + 5 5" + 5 3 + 352+25+1 54 + 53 + 35 + 25+ 1 541253+352+5+1)55+354+553+452+25+1 5⁵+25⁴+35³+5²+5 5⁴+25²+35²+5+1 54 + 25 3 + 352 + 5 + 1 SO, FACTORING OUT AN (S+1) FROM THE NUMERATOR & THE PENOMINATOR LEAVES: Z(s)= 54+53+352+5+1, THE ORIGINAL EXPRESSION

9) 2(5)= 54 808 3 4. a) pos REAL? UNUM + DEN = 554+453+ 1052+55+4 54 E. 10 1 53 5 4 52 4 4 51 60 2) A(s2) = m. m. = n.n. $= (45^{4} + 75^{2} + 2)(5^{4} + 35^{2} + 2) - (35^{3} + 45)(5^{3} + 5)$ = (458+1956+3154+2052+4) - (356+754+452) = 458416564245441652+4 $A(\omega^2) = A(s^2)|_{s=j\omega} = 4\omega^8 - 16\omega^6 + 24\omega^4 - 16\omega^2 + 4$ $= 4(w^{8} - 4w^{6} + 6w^{4} - 4w^{2} + 1)$ Po(x)=A(w2)|x=w2=4(x4-4x3+6x2-4x+1) = 4(x-1)4 20 V x WHEN S IS REA L 3) 2(5) 15 REAL $\Rightarrow z(s)$ IS POSITIVE REAL PREAMBLE (CONT.) 6) FOSTER 1) NO POLES @ O DR AD 2) JAXIS POLES ROUTH ON DEN: 54 2 53 => (52+1) FACTOR! in the second 52 2 Ê SI 50 2.

2,(5)= 2(5 45 2) - (53+52+25) 623 (329 (5 = (43 4 2 <u>54+253+652+</u> (52+1)(52+5+ 452+25+2 52+1)454+253+652+25+ 452 4452 253+252+2512 253 125 25². 4<u>5²425+2</u> ·2+5+2 2(252+5+2) 2 2,(5)= MINIMUM RESISTANCE FINDING FIRST, LOOK @ M, M2 = M, M2 = A(53) = (452+2)(52+2)-(252) =(454+1052+4)-252 = 45"+852+4 = 4 (54+252+1) $A(\omega^2) = 4(\omega^4 - 2\omega^2 + 1)$ = $4(\omega^2 - 1)^2 = 0$ FOR $\omega = 1$ > min [Re Z (jw)]=0 FOR w=1 ZI(S) HAS NO. O OR @ POLES, AND NO J-AXIS POLES ". Z. (S) IS A MINIMUM FUNCTION, READY TO BE BRUNIED

()

C

.

RESULT: d) CHECKING 25 1888 Fr Ē 25 - 7/5 18000 S 1. 2-5 19755-5 ΊÝ 5 25²+2 1 - 5 Jes seeriseering Z 25³+35 5²+1 253252-2512 Ċ, 25-2-5-4-2-Z-(S)= 92 piga. $\frac{25^{3} + 3. + 2}{35^{3} - 35^{2} - 65}$ $\frac{25^{5} + 25^{4} + 45^{3}}{25^{5} + 25^{4} + 75^{3} + 35^{2} + 65}$

2) p_2q_1 $= 25^3 + 25^2 - 25 + 2$ $= 25^3 + 25^2 - 25 + 2$ $= 25^5 25^4 - 25^3 + 25^2$ $= 25^5 25^4 - 45^3 + 45^2 - 25 + 2$ $\Rightarrow p_1q_2 + q_2p_1 = 45^4 + 35^3 + 75^2 + 45 + 2$ 3) q_1q_2 $= 5^2 + 5 + 2$ $= 5^4 + 5^3 + 35^2 + 5 + 2$

> => Z(s) = 434 + 353 + 752 + 45 + 2 34 + 53 + 352 + 5+2, THE ORIGINAL EXPRESSION

BOB MARKS

EE 532 Network Synthesis I Final Examination

19

Four Hours

Nov. 21, 1972 Open Books & Notes

Determine an RC ladder betwork to realize the short-circuit admittance function specifications:

2. Determine an unloaded, symmetrical, RC lattice network to realize the short-circuit admittance function specifications:

$$y_{22} = \frac{(s+i)(s+3)}{(s+2)(s+4)}$$

$$-y_{12} = k \frac{s}{(s+2)} \frac{s}{(s+4)}$$

where k is selected to be as large as possible.

$$Y_{A} = Y_{22} - Y_{12}$$

$$= (S+1)(S+3) + kS$$

$$(S+2)(S+4)$$

$$= S^{2} + 4S + 3 + kS$$

$$(S+2)(S+4)$$

$$= \frac{S^{2} + (4+k)s+3}{(S+2)(S+4)}$$

$$= \frac{S^{2} + (4+k)s+3}{(S+2)(S+4)}$$

$$= \frac{S^{2} + (4+k)s+3}{ROUTH^{2} + S^{2} + (4+k)s+3}$$

$$ROUTH^{2} + S^{2} + \frac{3}{S^{2} + (4+k)s+3}$$

$$= \frac{S^{2} + (3+k)s+3}{S^{2} + (4+k)s+3}$$

$$\frac{1}{8} = \frac{1}{11 + 12}$$

$$= \frac{(s+1)(s+3) - ks}{(s+2)(s+4)}$$

$$= \frac{s^{2} + (4-k)s+3}{s^{2} + 6s + 8} \rightarrow k 2^{4}$$

$$Z_{B} = \frac{5^{2} + 6' + 8}{5^{2} + (4 \cdot k) + 3}$$

FOR YA TO BE RC K MUST YIELD RES. BEROS INTERLACING THE POLES. SAME FOR Th

Y TO AUX SHEET:
Y TO AUX SHEET:
(k+2)
$$5^{2} + (4-k) + 3/5^{2} + 65 + 8 \int 1$$
 $k > -2$
(k+2) $5^{2} + (4-k) + 3/5^{2} + (4-k) + 3$
 $[(4-k) - 5] + 3 (k+2) + 5 (k+2) + 5 (k+2) - 5]$
 $(4-k) - 5 + 3 (k+2) + 5 (k+2) - 5]$
 $(4-k) - 5 + 3 (k+2) + 5 (k+2) - 5]$

(1, j)

2) (CONT) 1,

$$Y_{22} = \frac{5^{3}+45+3}{5^{2}+65+3} = \frac{1}{12} = \frac{1}{5^{2}+65+3}$$

 $Y_{12} = \frac{5^{2}+45+3}{5^{2}+65+5} = \frac{1}{5^{2}+65+5}$
 $K MAX = 4$ TO SATISFY COEFF CONDITIONS
SO $Y_{4} = \frac{5^{2}+3}{5^{2}+2} + \frac{3}{5^{2}+65+5} = \frac{1}{5^{2}+25+3}$
 $Z_{q} = \frac{5^{2}+65+3}{5^{2}+55+3} = \frac{1}{5^{2}+25+3} = \frac{1}{5^$

Determine an unloaded symmetrical RC lattice network to realize the short-circuit admittance function specifications with as few elements

Given the transfer admittance function $-Y_{12}(s)$ for $Y_L = 1$ who, determine the equations for the Z_a and Z_b arms of the symmetrical constant-resistance lattice which can be used to realize this tfansfer admittance. (TO AUX SHEET) K- Z12 3 RE TE - 212 $\frac{1}{\sqrt{2}}$ 22a+1= 4 $Z_{12} = \frac{V_2}{J_1} \qquad 2Z_a = (-1 + \frac{1}{V_{12}}) \\ = \frac{1}{2} \frac{Z_a}{Z_a} = \frac{1}{2} (-1 + \frac{1}{V_{12}}) \\ = \frac{1}{2} \frac{Z_a}{Z_a} = \frac{1}{2} (-1 + \frac{1}{V_{12}}) \\ = \frac{1}{2} \frac{Z_a}{Z_a} = \frac{1}{2} (-1 + \frac{1}{V_{12}}) \\ = \frac{1}{2} \frac{Z_a}{Z_a} = \frac{1}{2} \frac{1}{2} (-1 + \frac{1}{V_{12}}) \\ = \frac{1}{2} \frac{Z_a}{Z_a} = \frac{1}{2} \frac{1}{2}$ A-I-2 $\frac{1}{V_1} = \frac{V_2}{V_1} = G_{12}$ - Y12 = 26=12 12: + Y12 = + G12 FOR 2,=1 $Y_{12} = G_{12} = \frac{-Y_{12}}{Y_{22} + 1}$ 20 \downarrow^{+} Zь \mathbb{Z}_{q} \odot $V_2 = \left(\frac{1}{2Z_q} + \frac{1}{4}\right) V_1$ $3\frac{V_2}{V_1} = \frac{1}{22a+1}$ 1/12

L. 1 Katalika Ontonia katalika H. V. Santa Ontonia \$ 1 V2 +Yiz = Iz $-\frac{V_2}{R_L}$ 29 Ś 1 V2 Za where from ! 0 14553 V V2 = $+Y_{12} = -\frac{V_2}{V_1} = \frac{1}{1+2z_a} \Rightarrow 1+2z_a = \frac{1}{Y_{12}} + \frac{1}{2z_a} = \frac{1}{Y_{12}} + \frac{1}{2z_a} = \frac{1}{Y_{12}} + \frac{1}{2} + \frac{1}$ Za

Use the results of problem 4 to obtain a symmetrical constant-resistance lattice realization of the transfer admittance function

(____)

$$Y_{A} = \frac{65+1}{125+4} + 5$$

$$= \frac{65+1+125^{2}+45}{125+4}$$

$$= \frac{125^{2}+105+1}{125+4}$$

$$= \frac{125+4}{125+4}$$

$$= \frac{125+4}{125+4}$$

$$Z_{A} = \frac{125+4}{125^{2}+105+1}$$

$$Z_{b} = \frac{65^{2}+65+1}{35}$$

$$Z_{b} = \frac{65^{2} + 65 + 1}{35}$$

$$Z_{a} = \frac{125 + 1}{125^{2} + 105 + 1}$$

$$Z_{11} = \frac{1}{2} \left(\frac{2a + 2b}{125^{2} + 105 + 1} + \frac{65^{2} + 65 + 1}{35} \right)$$

$$= \frac{1}{2} \left(\frac{125 + 1}{125^{2} + 105 + 1} + \frac{35}{35} \right)$$

$$= \frac{1}{2} \left((125 + 1) \right) 35 + 6^{\frac{5}{2}}$$

$$\begin{aligned} z_{11} &= \frac{1}{2} \left(\frac{2a + 2b}{125^{2} + 105 + 1} + \frac{65^{2} + 65 + 1}{35} \right) \\ &= \frac{1}{2} \left[\frac{125 + 44}{125^{2} + 105 + 1} + \frac{35}{35} \right] \\ &= \frac{1}{2} \left[\frac{(35)(125 + 4) + (105^{2} + 105 + 1)(65^{2} + 655 + 1)}{(125^{2} + 105 + 1)(35)} \right] \\ &= \frac{1}{2} \left[\frac{365^{2} + 125 + 605^{4} + 605^{3} + 105^{2} + 605^{3} + 105^{2} + 655^{4} + 105^{2$$

(6

Determine the z_{12} and z_{11} ^a z_{22} functions for this symmetrical Bridged-T network by first obtaining the impedance functions (Z_a and Z_b) of the equivalent symmetrical lattice network.

BARTLETT'S BISECTION THEM:

 $Z_{25}Z_{11} = \frac{1}{2}(Z_{A} + Z_{b}) = \frac{1}{2}\left[\frac{S^{2} + 4}{2S} + \frac{2S}{S^{2} + 4}\right] = \frac{1}{2}\left(\frac{S^{2} + 4}{2S}\right)^{2} + \frac{4S^{2}}{4S^{2}}$ $= \frac{S^{4} + \left|\frac{S^{2} + 4}{2S}\right|^{2} + \frac{16}{2}\left(\frac{2S}{2S}\right)\left(\frac{S^{2} + 4}{2S^{2}}\right)$ $\frac{Z_{12} = Z_{2}}{4(S^{3} + 4S)}$ $Z_{12} = Z_{2} = \frac{1}{2}\left(\frac{Z_{b} - Z_{a}}{2S}\right) = \frac{1}{2}\left(\frac{-4S^{2} + (S^{2} + 4)^{2}}{(2S)(S^{2} + 4)}\right) = \frac{+S^{4} + 15}{4(S^{3} + 4S)}$

12-5-71 CHAPTER 13. BUTTERWORTH FILTERS CHEBYCHEV FILTERS BEFORE CHRISTMAS WAR IDEAL FILTER $G_{21} = \frac{V_2}{V_1} \Big|_{I_2=0}$ Giu -Q2>Q1 Q_{i} 4 BODE : -20dB/ DECAPE 20 dB, DECADE 1G21 FILTER TYPES; 1 (HIGH PASS STOP BAND PASS BAND BAND PASS 1 BAND ELIMINATION PHASE PLOTS: $LG(j\omega)$ -10) CIDEAL

CONSIDER BLACK BOX; Vour VIN $V_{iN} = A_i \cos \omega t = A_i \cos \Theta_i$ Vour = A2 cos (wt + \$)= A2 cos @2 de, = de, = t = ENVELORE OR GROUP DELAY D = PHASE DELAY TIME DELAY IS RELATED TO THE SLOP U) BUTTERWORTH FILTER (CHAPTER 13.1) IGia(jw) = V1 + W2n' ⇒ NTH ORDER BUTTERWORTH FILTER $|G(j_1)| = \frac{\sqrt{2}}{2}$ FOR W>>1; G12 (jw)= w" 116,2(jw)) 1 1/2 ~ SLOPE PROPORTIONAL TO N 1 FILTER IS MAXIMALLY FLAT @ w=0

12-7-72 13-3, 13-4, 13-5, 13-10, 13-14 (pp 374-385) BUTTERWORTH 1612(jw)1= VI+W=1 1) MAXIMALLY FLAT @ W=0 2) $|G_{12}(j1)] = 1/\sqrt{2}$ 3) $|G_{12}(j\omega)| = 1/\sqrt{2}$ (201) $\frac{db}{dcADE}$ 1 1/2 POLE LOCATIONS -52=W2 1612 (jw) 12 = G12 (jw) G12 (jw) CONJUGATE = G12 (jw) G12 (-jw) $= \begin{bmatrix} G_{12}(s) & G_{12}(-s) \end{bmatrix} s = j \omega$ THEN: $|G_{12}(s)|^2 = \frac{1+(-s^2)^n}{1+(-s^2)^n} = 1$ ROOTS FROM: $(-s^2)^n = -1$ 100 a) n=1 => * POLE FROM GIZ (-S) × $\begin{pmatrix} \mathbf{X} \\ \mathbf{-1} \end{pmatrix}$ o FROM GIZ(S) POLE b) n= 2 X \mathcal{O} Xį c)n=3

ROOTS ALWAYS LIE ON UNIT CIRCLE $S_{k} = \Theta^{\frac{1}{2}(\frac{3k-1}{4})} = ; n = EVEN$ $S_{k} = \Theta^{\frac{1}{2}(\frac{2k}{4})} = ; n = ODD$: n=00D G12(5)= 1+0,5+0252+...+0,5" & COEFFICIENTS FROM TABLE 13-2 PE 374 CHEBYSHEV W $|G_{12}(j\omega)|^2 = \frac{1}{1 + \varepsilon^2 C_n^2(\omega)} \ni C_n(\omega) \text{ is CHEBYSHEV}_{FONCTION}$ $C_n(\omega) \stackrel{*}{=} \begin{cases} \cos \left[n \cos^{\circ} \omega \right] & ; |\omega| \le 1 \\ \cosh \left[n \cosh^{\circ} \omega \right] & ; |\omega| \ge 1 \end{cases}$ $conside R = col^{-1}(w)$ Cn(w) = cosna = Cn(a) $C_{n+1}(\alpha) = cos(n+1)\alpha$ = cos nd cosd - sin nd sind Cn-1 (a) = cos (n-1)d = cos na cosa+ sun na sind => Cn+, (x) + Cn-, (x) = n 202 na cosk Losa = w; cosnd = Cn(a). THEN: $C_{n+1}(\omega) = 2\omega C_n(\omega) - C_{n-1}(\omega)$ THUS: $C_0 = 1$; $C_1(\omega) = \omega$ GIVES: C2(w)=2w2-1, ETC. LISTED ON Pg. 377 OF TEXT

FOR $|\omega| < 1$, THEN $C_n(\omega) = \cos \left[n \cos^{-1} \omega \right]$ $|C_n(\omega)| \leq 1$ ĺ Cn $\delta \ge \delta$ E SHOWN ON PS. 378 nº4 W 0=P AGAIN: 16,2(jw) = 1+ e= cn²(w). noon n 1 ---VITER Ą EVEN N RIPPLE: 1 = $\sqrt{1 - \epsilon^2}$ (EXPANSION) = 1 - $\left[1 - \frac{\epsilon^2}{2} + \ldots\right]$ FOR ELC: $RIPPLE = \frac{e^2}{2}$

FOR IWIS 1 $\begin{array}{c} \mu \in \Gamma \quad \mathcal{B} = cos \mathcal{K}^{-1} \omega \\ cos \mathcal{K} \cap \mathcal{B} = 2 \end{array} \begin{array}{c} e^{n\mathcal{B}} + e^{-n\mathcal{B}} \\ 2 \end{array}$ CB = cosh B + sinh B => cosh nB= (cosh B+ sinh B)"+ (cosh B+ sinh B)" $\frac{\cosh \beta}{\beta} = \frac{\omega}{2} \frac{1}{\omega + \sqrt{\omega^2 - 1}} + (\omega \pm \sqrt{\omega^2 - 1})^n$ FOR $n \ge 2$ $\notin (\omega >>4)$ $\cosh[n \cosh^{-1}\omega] \cong (\omega + \sqrt{\omega} \ge 1)^{n} = C_{n}(\omega) \stackrel{\text{EMPLOYING}}{(+) \operatorname{SIGN}}$ $\tau + \operatorname{EN} |G_{12}(j\omega)|_{\omega >>1}^{=} \overline{eC_{n}(\omega)} \stackrel{=}{=} 2^{n-1} \overline{e\omega}^{n}$ POLES ON ELLIPSE:

12-12-72 13-10) jw X AW AW X \mathcal{O}° -0,-X $G_{12}(s) = (s + \sigma_1)(s + \sigma_1 + j \Delta \omega)(s + \sigma_1 - j \Delta \omega)(s + \sigma_2 - j \Delta \omega)(s + \sigma_1 - j \Delta \omega)(s + \sigma_2 - j \Delta \omega)$ = $(s+o_1)[(s+o_1)^2 + \Delta w^2][(s+o_1)^2 + 2\Delta w^2][]$ LG12(jw)= atan 0; - atan 0,2+0w2 + ... = Θ W ~ IDEAL 0 $T = \frac{d\theta}{d\omega}$

13-14) $T_{1} |G_{12}(j\omega)|^{2} = T + E^{2}C_{1}^{2}(\omega)$ T_{i} 1 -4) $1 - T_1 = \frac{1 + e^2 c_n^2(\omega) - 1}{1 + e^2 c_n^2(\omega)}$ 1 ---- 1 $= \frac{E^2 C_n^2(\omega)}{1 + E^2 C_n^2(\omega)}$ 4 w たきい $\Rightarrow \frac{\varepsilon^2 C_n^2 (1/\omega)}{1 + \varepsilon^2 C_n^2 (1/\omega)} \Longrightarrow 1$ $\frac{2Cn^{2}(V\omega)}{1+e^{2}Cn^{2}(V\omega)} \Longrightarrow$ 200 $\cosh^{-1} x = ln = \frac{x \pm \sqrt{x^2 - 1}}{2}$

12-14-72 NEPERS $\frac{\sqrt{2}}{\sqrt{1}} = H(s)$ $= e^{\alpha + i\beta}$ $\frac{1}{\sqrt{2}} = e^{\alpha}$ = exetB = Cacb B => PHASE ea > AMPLITUDE $|\frac{V_2}{V_1}| = e^{\alpha}$ 20 log, 1 7, 1 = 20 log 10 ed > dbodd 12-19-72 11-21-72 14:1, 13,14,16,17,4,5 RECALL THAT FOR THE STMMETRICAL LATTICE: Zer = 211 - 2, 5 2,5=2,+2,2 FOR CONSTANT - Ziz/1+Z,2 - Zo

1-8-72 QUADRADRANTAL SYMMETRY- CONSTELLATION MUST HAVE REFLECTION ON BOTH AXES. $\frac{(1+\omega^{2})^{2}}{|Z_{12}(j\omega)|^{2}} = 1-\omega^{2}+\omega^{6}$ (14-130) PROB; 14-1,13,14,16,4,5 PROB: 15.4,5,6 1-9-72 1-12-73 TAKE HOME TEST sec. 11-2,3 Pg 305 SEC 11-4, Pg 313 OMIT REST OF CHAPT. 11 SEC. 14,2, Pg- 402 START $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{12} & z_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $V_{2} = -J_{2}$ $V_{1} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{12} & Z_{2} \neq I \end{bmatrix} \begin{bmatrix} Z_{1} \\ Z_{12} & Z_{2} \neq I \end{bmatrix} \begin{bmatrix} Z_{1} \\ Z_{12} & Z_{2} \neq I \end{bmatrix}$ $Z_{11} = \begin{bmatrix} Z_{11} & Z_{12} & Z_{12} \\ Z_{11} & Z_{12} & Z_{2} \neq I \end{bmatrix}$ BUT Y22 = 22 | V,20 = 21/Az Z1 (442+1) Z1 = Z22+1 = to 14.22, pg 403 PROB. 14-17, 15-7 8

1-13-73 SEC. 14-2 SUMERAZATION ON PS 419 1-19-72 Pg. 97 $T(s) = \frac{\chi(s)}{F(s)} = a_{4}s^{4} + a_{3}s^{2} + a_{3}s^{2} + a_{5}s + a_{6}s$ FCS - X(s) ter allen Kent b252+b,s+bo 9353+9252+9,5+90 I(s) 0(5)= (b))(<u>s</u>) P-L 15 (Va) sada 14 (V) (alles $\begin{pmatrix} g_{e} \\ g_{e} \end{pmatrix}$ K(VR-VI) V_2

SCATTERING PARAMETERS $\begin{array}{c} R_{1} \quad L_{1} \\ \hline \\ V_{1} \quad L_{2} \\ \hline \\ V_{1} \quad L_{2} \\ \hline \\ V_{2} \quad R_{2} \\ \hline \\ \\ \end{array}$ $\begin{bmatrix} I_{1} \\ I_{2} \end{bmatrix} = \begin{bmatrix} Y_{11}^{\prime} & Y_{12} \\ Y_{21}^{\prime} & Y_{22} \end{bmatrix} \begin{bmatrix} V_{1} \\ V_{2} \end{bmatrix}$ $\begin{array}{c} \text{DEFINE:} \\ \alpha_{i} = \frac{V_{i} + R_{i} I_{i}}{2 \sqrt{R_{i}}} \end{array}$ be ZVRT $b_2 \stackrel{\land}{=} \frac{V_2 - R_2 I_2}{2 \sqrt{R_2}}$ $\alpha_2 = \frac{\lambda}{2\sqrt{R_1^2}}$ THEN a, + b, = VI/VR. a2+b2= V2/VR3 a2 - b2 = VR2 Is $a_1 \cdot b_1 = \sqrt{R_1^2} I_1$ CONSIDER RIERZERO $\begin{bmatrix} a_{1}-b_{1} \\ VR_{0} \\ a_{2}-b_{2} \\ VR_{0} \end{bmatrix} = \begin{bmatrix} Y_{11}'VR_{0}'(a_{1}+b_{1}) + Y_{12}'VR_{0}'(a_{2}+b_{2}) \\ YR_{0}' \end{bmatrix} = \begin{bmatrix} Y_{21}'VR_{0}'(a_{1}+b_{1}) + Y_{22}'VR_{0}'(a_{2}+b_{2}) \\ VR_{0}' \end{bmatrix}$ 1-30-72

12.3)
$$n=5$$
; $e^{2}=0.2$
a) $1G(j\omega)|_{MAX} = 1$
 $1G(j\omega)|_{MIN} = \sqrt{11+e^2}$
 $= \sqrt{1.2^{1}}$
 $= 0.914$
b) $wivtH = 1.0 \cdot 0.914 = 0.036$
 $1G(j\omega)|_{MIN}$
 $oR dB = 20 \log_{10} 16(j\omega)|_{MIN}$
 $= 20 \log_{10} 0.914$
 $= -20 \log_{10} 0.914$
 $= -20 \log_{10} 1.096$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $= -20 (0.393)$
 $=$

13.4) RIPPLE WIDTH = 0.5 db

$$|G(j \, \omega_{Y_2})|^2 \, \frac{1}{2} \quad \exists \, \omega_{Y_2} = 1.1$$
a) 20 $\log_{10} \sqrt{1+e^{21}} = 0.5$
 $\log_{10} \sqrt{1+e^{21}} = -0.025$
 $\sqrt{1+e^{2}} = 0.9444$
 $G^2 = (0.944)^2 = 1$
 $= 0.124$
 $G = 0.1114$
b) $|G(j \, \omega_{Y_2})|^2 = 1 + e^2 C_n^2 (\omega_{Y_2}) = \frac{1}{2}$
 $G^2 C_n^2 (\omega_{Y_2}) = 1$
 $C_n (\omega_{Y_2}) = \frac{1}{e} = \cosh[\ln \cosh^{-1}\omega]$
 $\cosh^{-1} \frac{1}{e} = \ln \cosh^{-1}\omega$
 $\int = \frac{\cosh^{-1}(1/6.004)}{\cosh^{-1}(1.1)}$
 $= \frac{\cosh^{-1}(1/6.004)}{\cosh^{-1}(1.1)}$
 $= \frac{\cosh^{-1}(1.1)}{\cos^{-1}(1.1)}$
 $= \frac{2.854}{0.445}$
 $= 6.4$

=> 7 STAGES ARE NEEDED

1

13-10 $-\sigma_i \rightarrow$ G(jw)= (s+o,) II (s+o,+jnAw)(s+o,-jnAw) $\begin{array}{c} \mathcal{L} \ G_{12}(j,\omega) = \frac{1}{2} a \tan \frac{\omega}{\sigma_{1}} = \sum_{i=1}^{3} a \tan \frac{2\omega\sigma_{i}}{\sigma_{i}^{2} + \omega^{2} + n^{2} \Delta \omega^{2}} \\ \frac{-\gamma_{\sigma}}{\omega} = \frac{-\gamma_{\sigma}}{1 + (\frac{\omega}{\sigma})^{2}} = \sum_{n=1}^{3} \frac{d\omega}{1 + (\frac{2\omega\sigma_{i}}{\sigma_{i}^{2} + \omega^{2} + n^{2} \Delta \omega^{2}})^{2}} \\ \frac{d\omega}{\omega} \left(\frac{2\omega\sigma_{i}}{\sigma_{i}^{2} + \omega^{2} + n^{2} \Delta \omega^{2}} \right)^{2} \end{array}$ $\frac{d}{dw} \left[\frac{2 \omega \sigma}{\sigma_{s}^{2} + \omega^{2} + n^{2} \Delta \omega^{2}} \right] = \frac{2\sigma_{s} (\sigma_{s}^{2} + \omega^{2} + n^{2} \Delta \omega^{2}) - 4 \omega \sigma_{s}}{\left[\sigma_{s}^{2} + \omega^{2} + n^{2} \Delta \omega^{2} \right]^{2}}$ $T = -\frac{1}{\sigma + \frac{\omega^{2}}{\sigma^{2}}} = \frac{3}{\frac{2\sigma_{1}\left[\left(\sigma_{1}^{2} + \omega^{2} + n^{2}\Delta\omega^{2}\right) - 2\omega\right]}{1 + \left(2\omega\sigma_{1}\right)^{2}}} + \frac{3\sigma_{1}\left[\left(\sigma_{1}^{2} + \omega^{2} + n^{2}\Delta\omega^{2}\right) - 2\omega\right]}{1 + \left(2\omega\sigma_{1}\right)^{2}}$

14.1) a) $Z_{12}(5) = (5+1)(5^{2}+25+2)$ - (s+1)(s+1+j)(s+1-j) jw j. × 0 1997 - 19 $\frac{7}{2_{12}(5)} = \frac{7}{(5^{3}+25^{2}+25)} + (5^{2}+25+2)$ = $\frac{2}{5^{3}+35^{2}+45+4}$ 53745 2 1 + 35°744 22,110 357 + 4 ; Z12(3)= 53+45 $2 \leq$

14.4) Z12(5)= 53+52 3542 $\begin{array}{c} \underline{s^{2}+2} \\ \underline{s^{2}+3} \\ \underline{s^{2}+3} \\ \underline{s^{2}+3} \\ \underline{s^{2}+3} \\ \underline{s^{2}+1} \\ \underline{s^{2}+1}$ io 0 Х TAKE OUT POLE OF Y2 @ 00 $5^{2}+2/5^{3}+35$ =1 53+25 S $\begin{array}{c} Y_{2} = \frac{S}{S^{2} + 2} \\ \overline{Y}_{3} = \frac{S^{2} + 2}{S} = \frac{(S + \frac{1}{2}\sqrt{2^{1}})(S - \frac{1}{2}\sqrt{2^{1}})}{S} \end{array}$ anditien viense - 0 V21 - X TAKE OUT POLE OF Z3 @ 00 POLL $S = \frac{S}{S^2 + 2}$ $\frac{S^2}{S^2}$ - 1. - - 1. $Z_4 = \frac{2}{5} \Rightarrow Y_4 = \frac{5}{2}$ Y4 P X OUT POLE @ (\mathcal{O}) TAKE YA ØF YIELDING NETWORK: 1.H 20000 -1F \$ 1 D 12F

14.5) Y12(5)= 33+25 +25+ $= \frac{1}{25^{3}+25}$ (s+j)(s-j) 5(s+j)(s-j) (v2's+j)v4 $-Y_{12}(S) = \frac{5^{2}+1}{25^{2}+1}$ $Y_{22}(S) = \frac{5^{2}+1}{5^{3}+25}$ S(S+J/2)(S-J/2) 2(S+J/VZ)(S-J/VZ) S(S+J/VZ)(S-J/VZ) - Y12(5) Y22(5) 1 12 Y22(5) 5 X 0 00 0 Z_= Y206 X AT 00 FROM Z2 TAKE OUT POLE 1/2 $\frac{\frac{1}{2}s}{2s^{2}+1}s^{3}+2s$ $\frac{5^{3} + \frac{1}{2}5}{\frac{3}{2}5} = \frac{3}{2} \frac{5}{25^{2} + 1} = \frac{4}{3} \frac{(5 + \frac{1}{3}\sqrt{2})(5 - \frac{1}{3}\sqrt{2})}{5}$ $\frac{7}{2} = \frac{3}{2} \frac{25^{2} + 1}{25^{2} + 1} = \frac{4}{3} \frac{(5 + \frac{1}{3}\sqrt{2})(5 - \frac{1}{3}\sqrt{2})}{5}$ Y3 * 1/12 TAKE OUT Y_3 POLE C of $\frac{4}{3}S$ $\frac{3}{2}S$) $2S^2 + 1$ $2S^2$ $\frac{1}{3}S = \frac{1}{3}S \Rightarrow z_4 = \frac{1}{3}S$ 55 m-0 35 Y4 O YIELDING THE NETWORK: 3/2H

June • 1964

SCIENCE CO ENGINEERING SERIES

INTRODUCTION TO FILTERS

A. I. ZVEREV, Westinghouse Electric Corporation

FILTER THEORY and design is one of the most highly developed and most widely applied areas of electrical engineering.

Filters can be found in all kinds of commercial and military electronics equipment. They help to channel energy, divide the frequency spectrum, extract Doppler information, integrate coherent signals and maintain accuracy of separation between frequency sources.

The special properties of filters allow their application in many other systems, including mechanical and acoustical systems. These properties are the ability to coordinate the action of several resonant elements to produce uniform output over a prescribed frequency range, and the ability to deliver energy over the widest possible frequency range. Filter theory shows how to combine resonant mechanical or electromechanical elements to produce a uniform conversion of electrical to mechanical energy (or vice versa) over a frequency range, and to determine the greatest bandwidth that can be obtained without loss of efficiency.

All recent progress in electronics has been closely accompanied by progress in filter technology and network theory. The performance of passive and active networks, in the form of transmission filters, can be predicted and analytically described under actual operating conditions in an exact mathematical form. This fact explains why, in new electronic systems, much emphasis has been placed on such networks.

The wide diversity of filter configurations, response characteristics and applications has produced a wealth of terminology and design concepts which often proves confusing to the engineer who is not a filter expert. This article classifies filters in terms of the types of filter elements used, the functions that the filters perform, the response characteristics of filters and methods used to design them.

A number of specific design tools (polynomials, design equations, transformations and curves) are given, but the purpose of the article is to indicate the extent, rather than to exhaust the content, of the field of filter theory and design.

Anatol Ivan Zverev was born and educated in Russia, where he earned a diploma of engineering (M.S.) from the Leningrad Electro-Technique Institute, and a degree in advanced technical science from the Academy of Transport in Moscow, where he was Assistant Professor of transmission-line theory.

In 1953 he joined the Electronics Division of Westinghouse Electric Corporation as a Senior Engineer. Over the past ten years he has been involved in the design of communication, radar, data transmission, and satellite navigation systems. He has been section manager of network synthesis since 1959 and is director of the Network Synthesis Seminar.

His most recent publications include "Application of Network Synthesis to Broadbanding Transmitting System," TPE 4795, 1963, and "Helical Filters," NS 6312, 1963.

> HOWARD FALK Associate Editor

INTRODUCTION TO FILTERS

THE ELECTRIC-WAVE FILTER was independently discovered by George Campbell in America and Karl Willy Wagner in Germany in 1917. Their results evolved from earlier work on loaded transmission lines and the classical theory of vibrating systems. The first filters were ladder structures, although lattice sections were discussed by Campbell in 1920-1922. Next came Zobel's invention of *m*-derived and image-parameter theory based on transmissionline analogy. Zobel began with simple iterative structures and extended them to complex or composite (m-derived) sections, each with its useful impedance and attenuation properties. The catalog of elementary sections is sufficiently extended to cover most practical requirements. A filter may thus be designed as a cascade connection of sections with matched image impedance. Zobel's filters permitted control of a wide range of filter characteristics, but the basic assumption of the theory-that such a filter behaves as a transmission line terminated at its characteristic impedance-is only approximate. The image-parameter approach suffers from three drawbacks.

1. The network obtained by this approach may be a lattice which cannot be reduced to a ladder network and is consequently difficult to realize as a microwave structure.

2. The network may be unnecessarily complex.

3. The network is frequently poorly matched at the extreme ends of the passband due to the fixed load and source impedance.

As far as we know, the first case of an exact filter design fitting a prescribed characteristic was given in 1929 by E. L. Norton and W. R. Bennett in U. S. patents. This work covered what is now known as a maximally flat type of response. In the late 1940's and early 1950's this method was extended to cover the Chebyshev type of response by Milton Dishal and others. In Norton's paper, the method of design starting from a prescribed insertion loss is established.

In 1939, a major advance in filter theory was made by S. Darlington in the United States, W. Cauer in Germany, and G. Cocci in Italy, when they solved the general synthesis problem for four-terminal reactor networks. They demonstrated the necessary and sufficient condition for a response to be realized by a physical network and developed a synthesis procedure for the realization of filter networks which could exhibit a prescribed response. Darlington also devised a method for precompensating the dissipative distortions.

Recently this theory has been widely used by filter specialists and scientists for the design of individual filters, and tables of design data covering a wide variety of cases have been compiled. Insertion-loss designs based on this synthesis procedure provide exact filter performance characteristics, and such designs lead to networks which exhibit desired responses with a minimum number of circuit elements.

Types of Filters

From the frequency-domain point of view, an ideal filter would be one that passes, without attenuation, all frequencies inside certain frequency limits while providing infinite attenuation for all other frequencies. The transfer function $|H(j\Omega)|$, the ratio of output to input quantities in the frequency domain for ideal filter, is shown graphically in Fig. 1.

From the time-domain point of view, an ideal filter is one whose output is identical to its input except for delay τ_o , or

$$e_{\rm out}(t) = e_{\rm in}(t - \tau_o)$$

Taking the Laplace transform of the above equation and looking at the transfer function in the frequency domain we obtain the ideal transfer function,

$$H(s) = e^{-\tau_0 s}$$

Letting $s = j\Omega$,

$H(j\Omega) = e^{-j\Omega\tau_o}$

This function is not frequency-selective since it has unity amplitude; its phase decreases linearly with frequency. These conditions may be realized in practice when the delay approximates a constant for the range of frequencies over which the attenuation is small.

Electrical filters can be classified in many different ways. In terms of the frequency spectrum they are classified as audio-frequency filters, radio-frequency filters, and microwave filters. In terms of the circuit configuration of the basic elements, they may be ladder filters (in the form of T or pi) or lattice filters

(Fig. 2), the latter being the most general type of network. In terms of the character of the elements, filters may be classified as LC filters, containing lumped inductors and capacitors; RC filters, containing resistors and capacitors; transmission-line filters, containing distributed components such as stripline filters or coaxial filters; electromechanical filters such as piezoelectric filters, magnetostrictive filters, etc. If a filter circuit has an internal source of energy, it is classified as an active filter. An i-f amplifier is an example of an active filter circuit. Filters with no source of energy within the network are termed passive. A classification of passive frequency filters is shown in Fig. 3.

The following five basic types of selective networks are used for frequency discrimination in electronic equipment.

1. The low-pass filter (Fig. 4) passes the package of wave energy from zero frequency up to a certain cutoff frequency and rejects all energy beyond this limit. For example, the effective transmission of the human voice requires a frequency band ranging from near zero to 4000 cps.

2. The high-pass filter (Fig. 5) prevents the transmission of frequencies below a certain point, and appears to be electrically transparent to frequencies beyond this point. The waveguide, used at microwave frequencies, behaves as a typical high-pass filter, and usually does not pass signals below several hundred megacycles.

3. The bandpass filter (Fig. 6) passes a package of waves between certain lower and upper frequency limits, and stops all energy outside these two limits. This filter is, by far, the most important and most commonly used in electronic equipment.

Fig. 3-- Classification of passive frequency filters.

4. The band-reject filter (Fig. 7) is used in electronic equipment when a certain unwanted frequency or band of frequencies has to be rejected. Outside of the rejection band or stopband, all frequencies will pass without appreciable attenuation.

5. All-pass filters pass all frequency components of the input signal but introduce predictable phase shift for different components of the wave package. A short impulse on the input side of such a filter modifies itself into a longer frequency-modulated signal at the output. It is evident that the all-pass device can be called a filter only in a limited sense because in the frequency domain it does not discriminate between the amplitude of the various signals.

Filter Applications

The use of electric-wave filters in electronic equipment has increased as equipment has become more complex. Many subsystem operations rely upon filters.

Preselector Networks. Preselector networks are required at the input of all sensitive receivers. They separate the desired signal or signals from the unwanted signals. Because the desired signal is usually very low in amplitude, while the undesirable signals, including noise, may be of appreciably greater magnitude, the preselector network is required to have very low insertion loss for the desired signal and high attenuation for the undesirable signals. The attenuation of desirable signals reduces the signal-to-noise ratio. An increase of 1 db in insertion loss decreases the signal-to-noise ratio by almost I db. The preselector filter is usually tunable, covers a whole range of frequency and provides only a small part of the needed selectivity of the whole receiver.

I-F Filters. The next step of signal selection usually occurs in the i-f strip or i-f amplifier. This selection and signal discrimination is of very high quality, especially in communication receivers. The bandwidth of the i-f filter determines the quality of the system, including the ripples in the passband, the noise content, and also the sharpness of the separation between neighboring transmitted signals. Filters of this kind are usually designed in two or even three interstage blocks, separated by tubes or transistors.

SSB Filters. In contrast to the symmetrical preselector filter, the single-sideband (SSB) filter requires a nonsymmetrical attenuation response. Phase-difference networks are sometimes used instead of a filter to eliminate the unwanted sideband. In either case, the main purpose of the network is to suppress the unwanted sideband to such a degree that it does not contribute appreciably to amplitude distortion and instability in the received signal. Insufficient unwanted-sideband suppression and insufficient synchronism of the carrier frequency produce undesired beat frequencies.

Comb Filters. Where noise is prevalent or jamming is introduced, the extraction of a predetermined signal from a medium can be performed by optimum filters. In general the optimum filter is a device whose input consists of a mixture of signal and noise. The output of this filter is a signal closely approximating the desired signal. For a signal represented by a periodic series of pulses, such an optimal filter may be a comb filter consisting of a chain of narrow-band filters which pass discrete frequency components and discriminate against noise (noise usually has a continuous spectrum.) The most important application of comb filters is the extraction of Doppler-frequency-shift information for passing targets such as satellites, aircraft, and underwater missiles.

Multiplexing Filters. Filters can provide multiple use of a broad-spectrum beam between terminal stages of a radio relaying system. It is possible to create up to one thousand telephone channels in one microwave link. In the case of a wire-carrier or power-line communication network the frequency range extends from the audio band up to 200 kc. The use of coaxial lines widens the usable range of frequencies and allows more communication channels to be created. The purpose of multiplexing equipment, in general, is the channeling of voice communications, telegraph, telemetering or tele-

Fig. 6—Bandpass filter response.

Fig. 7-Band-reject filter response.

control between distant points of road networks, pipe-line networks, power stations, etc. The major requirement of a multiplexing filter is to obtain the sharpest possible attenuation outside of the passband in order to suppress any crosstalk between the channels.

Anti-Jamming Filtering. Artificially created noise for jamming can completely destroy a radar target signal if no anti-jamming features are incorporated into a radar system. To improve target detectability, some special equipment features are needed and the narrow-band filter is the key component. The main requirement in this situation is that the filter, operating with pulsed signals, has both selectivity and the ability to minimize overshoot and ringing. Fo satisfy this requirement, the frequency-response curve of the filter usually has to be of a Bessel or Gaussian mape.

Matched Filters. The new science of correlation techniques and time-domain filtering is based upon

the matched filter. Such filters are used for generation and detection of the famous chirp signals, which have been widely used in radar for target identification. A chirp signal is a long pulse having a frequency which changes continuously in one direction without reversal. All-pass filters are used to generate this type of pulse. Chirp signals can be used to transmit binary data since marks and spaces can be coded by corresponding ascending and descending frequency-modulated pulses.

Matched filters provide a spectrum-spreading technique, and can make effective use of any bandwidth and tolerate large distortion; they can be insensitive to noise, tones or spurious signals, resist jamming, operate with single-sideband-frequency translation or Doppler shift, reject impulse noise, provide good signal-to-noise ratio, and require no synchronization. Their areas of application include teletype, signaling field data, and various data-entry systems. Matched-filter correlation techniques are very useful in meteor-búrst communication systems for minimizing the effect of multipath propagation and external interference.

Frequency Multipliers. Filters with a nonlinear reactance find application in all sorts of electronic equipment. In frequency multipliers, nonlinear elements and idlers are inserted between narrowband filters tuned to the fundamental and one of the harmonic frequencies (which has to be extracted). This arrangement can produce any signal harmonic related to the pilot source clock.

A chain of parameteric frequency multipliers can start with any low frequency which can be maintained constant.

The ideal network with one nonlinear reactor element transforms all the power of the fundamental input frequency into power at certain harmonics. Here the efficiency depends upon the familiar Q factor. Unavoidable conversion losses and the Q factor of nonlinear reactors in the harmonic generator have the same relationship as the insertion loss and Q factor of linear reactors in conventional filters.

Broadbanding Filters. A reactive network inserted between a transmitter and a narrow-band, lowfrequency antenna can tremendously improve the bandwidth of the whole system. In the case of solidstate transmitters and high-speed binary transmission at low radio frequencies, broadbanding with the aid of filters is the only practical solution for many cases where already existing high-Q antennas are involved. The only consequence of this broadbanding is that the filter input impedance, with respect to the transmitter output, varies widely with frequency. This type of system imposes requirements on available power from the source: however, the efficiency of the transmitter for frequencies in the vicinity of the center frequency can still be as high as 90 per cent.

Impedance Transformation. Every bandpass filter is potentially an impedance transformer. No matter how the bandpass filter is developed, its input and output impedances can be made different from one another. The usual way to obtain the impedance transformation is to introduce Norton's ideal transformer, which consists of three elements in pi or T form. This transformation imposes some limitation on the transformation coefficient n (the step-down or step-up ratio). Some prototype filter sections may be transformed into sections with realizable elements for values of transformation ratio no greater than a certain maximum. The resulting network usually consists of fewer elements than the original prototype.

Filter Design Problems

Some basic relationships and definitions pertaining to filter design are given in Appendix 1.

There are two conflicting methods of filter design. The method originated by Zobel is known as the *image-parameter* method. The method originated by Norton and Bennett in 1931–32 is known as the *exact* or *polynomial-synthesis* method.

Image-Parameter Method. Image-parameter filter theory is based on the properties of a long transmission line. A simple network with lumped components is described in terms of this continuous structure. Several such elementary networks with equal characteristic terminal impedances are connected together to produce a chain of sub-networks which will possess a transmission constant equal to the sum of all the individual transmission constants of the elementary sections.

The properties of different sections are very easy to determine and for all practical cases are easy to tabulate. Calculation of the cascade of composite networks is, therefore, a relatively easy procedure.

The disadvantage of this method is that, in practice, it is the effective transmission constant rather than the image transmission constant that is of interest and importance. When one designs networks by the image-parameter method, the load impedance is assumed to be equal to the characteristic impedance of the network. In practice, constantvalue ohmic resistors are used, rather than a variable image resistance. Many corrections will therefore be needed in order to determine the actual effective transmission coefficients. Another important disadvantage of this design method is that only a limited number of design parameters are available for choice. For example, the pole of effective attenuation can be chosen freely, but the number of zeros and their positions in the passband (which appear whenever the characteristic impedance of the filter and load impedance are equal) can then be modified only by switching from one class of impedance function to another. The choice of input-impedance class affects the class of attenuation because it changes the number of poles and zeros of the filtering function, D.

The fault of the image-parameter design is usually that the transmission is too flat and some discrimination is therefore lost. In practical terms this means that, for a particular level of passband ripple, only one image-parameter design is possible for each width of transition region.

The image-parameter method seems to be in disrepute among network theorists partially because of the cut-and-try method that is involved and partially because of the restricted freedom of design. The practical significance of this restriction, however, has not been adequately explored, and very little seems to have been done in applying the results of modern theory to improving older design procedure. If the Zobel design procedure could be brought up to date it might provide economical filters easy to design and adequate for most common applications.

Polynomial-Synthesis Method. The polynomialsynthesis method deals directly with effective parameters; it also provides an elegant solution to the approximation problem, but involves laborious computation for the determination of the element values. This procedure is now greatly simplified by tables, step-by-step design procedure, and design curves, but the theory behind these design tools is still in the province of the specialist. In more general synthesis procedures, a range of designs is possible in which greater stopband loss can be obtained at the expense of greater ripple factor. If, for example, a filter is designed by the polynomial method to have the same ripple as a Zobel filter of the same configuration, both filters will be identical.

Since the reflection coefficient is directly related to the insertion loss, it is usually necessary, if a low reflection coefficient is desired, to design the filter for flatter transmission than would otherwise be necessary. The polynomial filter has no practical limitation even for such an extremely severe requirement as reflection of 5 per cent or lower.

The use of the complex plane in polynomialsynthesis design is discussed in Appendix 2.

Comparison of Methods. In practice, either the synthesis or the image-parameter method of calculation may be used depending on the requirement in each specific case. In cases requiring the smallest number of elements to satisfy an exact performance specification, it is better to use the optimal design of the polynomial-synthesis method. This method certainly is worthwhile for mass production.

The synthesis procedure is always preferable when maximum stopband loss must be obtained at the expense of higher passband ripple, or where very flat transmission is needed to secure low reflections.

Figure 8(a) illustrates an attenuation curve for an m-derived, bandpass filter designed on the basis of image parameters. The accompanying schematic includes four coils and four capacitors and provides two peaks of attenuation outside of the passband. Figure 8(b) shows a filter of the same configuration designed according to polynomial-synthesis theory. In both cases the bandwidth and the quality factor of all components are the same. It is evident from this comparison that the second curve provides more attenuation outside of the passband. An explanation for this difference is the fact that, in the case of the ideal image-parameter filter, the band-pass region is much flatter.

As is well known, the losses add some rounding effect to the shape of the curve in the proximity of the cutoff. In most cases this rounding is very undesirable. Darlington and Nai-Ta-ming have developed an alternate design technique which is also based on polynomial synthesis, but in which the losses are taken into account and the rounding effect in the passband is effectively removed by predistortion. Figure 8(c) shows the same basic filter with the

design based on the predistorted technique. An insertion-loss ripple of 0.05 nepers or 0.43 db is present in the passband, and a certain amount of flat loss in the passband may be noted in the new design. In addition, the curve has a more rectangular attenuation shape. The difference between passband and stopband attenuation is 3 nepers, which is in accordance with the theory. From these curves the value of the predistortion technique is evident. The increase in passband attenuation of the predistorted filter does not diminish the practical value of the technique because in most applications the filter is followed by an amplifier to compensate for the loss.

Amplitude Response

There are many different shapes of amplitudeversus-frequency responses of filters which may be described by analytic functions. Also, there are established design procedures to approximate these types of response. The following are the main disinctive varieties of response.

1. Butterworth response (B) with "maximally flat" passband. Filters having this response are sometimes called power-term filters.

2. Chebyshev response (C) with "equal ripple" attenuation in the passband.

Fig. 8—Comparison of the amplitude responses of a bandpass filter designed by means of three different techniques. (a) Zobel filter, (b) polynomial filter, (c) predistorted polynomial filter.

3. Inverse Chebyshev response (IC) with equal minima of attenuation in the stopband.

4. Chebyshev complete response (CC) with equal ripple attenuation in the passband and equal minima of attenuation in the stopband. Filters having this response are sometimes called eliptic integral filters or filters with Cauer parameters.

5. Gaussian response.

6. Bessel response with "maximally flat delay." Filters having this response are known as Thomson filters.

- 7. Equal-ripple-delay filter response.
- 8. Legendre filter response.
- 9. Synchronously tuned (multiple-pole) filter response.

The first four response types belong to the Chebyshev family.

Usually, gain is cheap while selectivity is very expensive. For this reason a tremendous effort is made to find the most rational way to design a network with the minimum number of expensive components while satisfying the fundamental requirements of attenuation, phase etc. The mathematical problem posed by these considerations consists primarily in finding a network whose transfer function fits some appropriate polynomials. In most cases the polynomials which provide the best and most economical solution are of the Chebyshev type. The next three responses (5, 6, and 7) belong to the Gaussian family in the sense that they may all be conveniently used to satisfy phase and groupdelay requirements. (See the section of this article entitled "Phase and Group Delay.") The Gaussian response is represented by the well known exponential formula. The importance of this response shape cannot be fully appreciated from the point of view of frequency discrimination since the rate of increase in attenuation for Gaussian, Bessel and equal-ripple-delay filters is very low. Gaussianresponse filters should be regarded as compromise designs for pulsed systems where, except for the frequency discriminations, it is the truthful reproduction of the pulse shape that is important.

The amplitude response of an equal-ripple groupdelay approximation depends upon a special design parameter, which is characterized by the height of the group-delay ripples. This filter, for a given number of poles, will produce different curves of attenuation which depend upon the magnitude of the group-delay ripples.

Figure 9 illustrates several of the typical amplitude discrimination shapes mentioned above.

In filter technology there are many other types of amplitude response which cannot be prescribed by specific parameters. The design of filters which supply such responses requires consideration of physical rather than mathematical factors. Among these filters are:

1. Single-sideband (type S), which is basically unsymmetrical (sharper on one side of the passband than on the other).

2. Extremely-narrow-bandpass filters designed to transmit virtually one frequency only.

3. Very-wideband response filters.

4. Filters with restricted or unrestricted attenuation in a restricted band or bands of frequencies.

Each of these types has different design techniques, different requirements for element values, and different component technology. An example is that of filters designed to reject unwanted frequencies on one side of the passband. Here the sharpness of the response curve on this particular side has to be much higher than on the opposite side of the passband where there are only limited attenuation requirements. The use of a symmetrical Chebyshev type for such an application would be wasteful of components and would complicate auxiliary problems such as insertion loss in the passband.

Very-narrow-band filters require an extremely high quality factor Q for resonators. Such designs use crystal resonators, electromechanical resonators, etc. Narrow-band filters are used for comb arrangements and pilot filters for SSB communication, and in modern frequency synthesizers using varactor multipliers. The quality of the filter depends exclusively upon the quality of filter components. Stability during temperature changes and under severe mechanical conditions is a factor which may have to be considered.

The Chebyshev approximation is impractical for

very-narrow-bandpass filters because of the high-Qrequirements for the components. Very-wideband filters, on the other hand, need high-Q resonators only when high rates of cuton attenuation are required. Insertion loss is very low and does not present any problems for components in such wideband applications. In order to realize bandpass filters (with a 100 per cent bandwidth, for example), a tandem combination of low- and high-pass filters is often used instead of direct bandpass synthesis. This technique can simplify the circuit and separate the problem of selectivity from the problem of insertion loss in the proximity of cutoff. It also avoids excessive requirements on inductive and other components used in the circuit.

The Chebyshev Family of Response Functions

As indicated above, the Butterworth, Chebyshev, inverse Chebyshev, and Cauer-parameter filters are closely related to each other and can be developed along similar lines.

The Butterworth low-pass insertion-loss function is expressed by

$$\mathcal{A} = 10 \log \left| 1 + \left(\frac{\omega}{\omega_c} \right)^{2n} \right| = 10 \log \left| 1 + \Omega^{2n} \right|$$
$$= 10 \log \left(1 + D^2 \right) db$$

or

$$a = \frac{1}{2} \ln(1 + \Omega^{2n}) = \frac{1}{2} \ln(1 + D^{2})$$
 nepers

Fig. 10—Butterworth response shown on a logarithmic frequency scale $\left(\Omega = \frac{\omega}{\omega_{g}}\right)$.

Fig. 11—Maximally flat response curves for 8 uttenworth filters with values of *n* from 2 to 9.

where the filter discrimination factor $D = \Omega^n$ and the normalized frequency $\Omega = \omega/\omega_c$, the ratio of the given frequency ω to the cutoff frequency ω_c . The first ten Butterworth polynomials are given in Table I.

The insertion loss for these filters is 3 db at ω_c . The insertion-loss function has the flattest possible shape at the center of the passband and is a monotonically increasing function. Above the cutoff frequency the loss approaches a line drawn from ω_c which is increasingly linear on a logarithmic frequency scale at a rate of 6n db per octave. (See Fig. 10.)

Butterworth filters require n reactive elements (n appears as an exponent in the above equations). Maximally flat response curves for various values of n are given in Fig. 11. For n = 2 this shape corresponds to that obtained for the critically coupled condition of the familiar double-tuned circuit.

The Butterworth approximation is useful for many applications; however, its main advantage is its mathematical simplicity. The Butterworth function is unsuitable for applications which require uniform transmission of frequencies in the passband and sharp rise at cutoff. The response to a unit impulse input has overshoot which increases with increasing n, exceeding 11 per cent for n > 4.

Figure 12 shows an example of a low-pass filter response with an attenuation typical of the so-called Chebyshev filters where the abscissa is the normalized frequency Ω . The insertion-loss function for this response is

$$a = 10 \log \left| 1 + \epsilon^2 C_n^2(\Omega) \right| = 10 \log(1 + D^2)$$

where $D = \epsilon C_n(\Omega)$, the parameter ϵ is the ripple factor and $C_n(\Omega)$ is the Chebyshev polynomial of the first kind and of order *n*. The first 12 orders of C_n are given in Table II. In the passband $(-1 \le \Omega \le 1)$, the attenuation response varies between the values of zero and a_{\max} . The maximum passband insertion loss is $a_{\max} = 10 \log(1 + \epsilon^2)$. At frequencies slightly above Ω_c (the passband limit), the attenuation will surpass a_{\max} for the first time. A transition range follows and the stopband begins with frequency Ω_s . Here the attenuation a_{\min} is reached for the first time. If the filter is designed according to a Butterworth or Chebyshev polynomial, the attenuation curve will rise monotonically.

The Chebyshev response (n = 2) corresponds to that obtained with the overcoupled conditions of the familiar double-tuned passband circuit. In general, this shape has a number of ripples of equal height; this number is equal to the number of resonant circuits used. The equal-ripple filter for a given bandwidth has the greatest attenuation outside of the passband of any monotonic stopband or all-pole filter. The rate of increase depends not only upon the number of poles or resonators, but also upon a special design parameter, *i.e.*, the height of the ripples; the attenuation rate is higher for larger passband ripples.

The Chebyshev function is exceedingly useful in applications where the magnitude of the transfer function is of primary concern. This approximation gives more constant magnitude response throughout the passband but no improvement in decreasing the overshoot of the impulse response. The class of the Chebyshev functions is optimum in the sense that of all possible transfer functions with zeros at infinity (all-pole functions) it has the lowest complexity for yielding a prescribed maximum deviation in the passband and the fastest possible rate of cutoff outside the passband. As a consequence, the transition range for reaching a prescribed attenuation, a_{min} , is a minimum, and the attenuation in the stopband is never less than this prescribed attenuation. No other polynomial possessing these optimum properties exists.

The Chebyshev polynomial includes the restriction that all the zeros of the transfer function lie in infinity. In other words, the reciprocal of the transfer function is required to be a polynomial. On the other hand, the Chebyshev rational functions are not so restricted. Rather, their transfer function takes the form

$$|Z_{21}|^2 = \frac{1}{1 + \epsilon^2 R_{\mu}^2(\Omega)}$$

and the attenuation becomes

$$a = 10 \log |1 + \epsilon^2 R_n^2(\Omega)|$$

= 10 log(1 + D²)

where $R_n(\Omega)$ is chosen so that *a* has an equiripple attenuation in the passband and the stopband. Here the filter discrimination factor $D = \epsilon R_n(\Omega)$. Depending upon whether it is even or odd, $R_n(\Omega)$ has one of two forms:

Fig. 12—Typical Chebyshev attenuation response for a low-pass filter.

$$R_{2n}(\Omega) = \frac{A(\Omega^2 - \Omega_1^2)(\Omega^2 - \Omega_3^2)\cdots(\Omega^2 - \Omega_{2n-1}^2)}{(\Omega^2 - \Omega_2^2)(\Omega^2 - \Omega_4^2)\cdots(\Omega^2 - \Omega_{2n}^2)}$$

or.

$$R_{2n+1}(\Omega) = \frac{B(\Omega^2 - \Omega_1^2)(\Omega^2 - \Omega_3^2)\cdots(\Omega^2 - \Omega_{2n-1}^2)}{(\Omega^2 - \Omega_2^2)(\Omega^2 - \Omega_4^2)\cdots(\Omega^2 - \Omega_{2n}^2)}$$

In the passband, $-1 \le \Omega \le 1$, $R_n(\Omega)$ must lie between the limits -1 and +1. In the stopband, $R_n(\Omega)$ should take the maximum possible absolute values for the given degree of n.

Parameters $\Omega_1 \cdots \Omega_{2n-1}$ are always in the passband, while $\Omega_2 \cdots \Omega_{2n}$ are in the stopband. Moreover, the following relation also holds:

$$\Omega_1 \Omega_2 = \Omega_{2n-1} \Omega_{2n} = \Omega_s \Omega_c$$

where Ω_c is the passband ripple bandwidth and Ω_s corresponds to the first frequency attenuated by a_{\min} . In other words, the poles of R_n are the reciprocals of its zeros. The integer *n* determines the complexity of the function; specifically, it is equal to the number of Ω^2 zeros (or poles or a suitable combination of the two types of critical frequencies) that must be specified. Because of the reciprocal relationship between the zeros and the poles of the function its value at any Ω_1 in the range $0 < \Omega < 1$ is the reciprocal of its value at $1/\Omega_1$ in the range $1 < \Omega < \infty$. If the critical frequencies can be found so that rational function has equiripples in the passband, it will automatically have equiripples in the stopband. In Fig. 12, $\Omega_c = 1$ is used as the actual cutoff frequency.

From the preceding discussion it is clear that there are four parameters involved in the specification of the optimum filter:

1) the maximum attenuation in the passband, a_{max} ;

2) the maximum gain in the stopband (or minimum attenuation, a_{\min});

3) the transition interval; and

4) the complexity of the function denoted by *n*.

Any three of these may be given in a practical problem. Minimizing the fourth is automatically accomplished by use of the appropriate Chebyshev rational function.

The universal normalized Chebyshev response is shown in Fig. 13. The transition interval between

passband and stopband is represented by Δa , which can be simply related to the transmission function. All design parameters, such as value and position of a_{max} and a_{min} , as well as frequencies Ω_c and Ω_s are under the control of the designer.

If the stopband attenuation a_{\min} is increased to infinity, the value of Ω_s will then have to go to infinity and the defined restricted stopband will be compressed and moved to infinite frequency, in which case the Chebyshev rational function reduces to a Chebyshev polynomial. To design a low-pass prototype filter which exhibits any response of the Chebyshev family one need not go through the complete synthesis procedure. Tables of the element values for normalized low-pass filters are available. The properties of the Chebyshev filters are tabulated in Fig. 14. The responses for inverse Chebyshev filters are shown in the first row of Fig. 14(a). The corresponding locus of the transfer-function poles, shown in the first row of Fig. 14(b), changes from the deformed half circle to the half circle which is characteristic of Butterworth filters.

In the middle row of Fig. 14, the responses for filters with Chebyshev approximation in the passband and stopband are shown. The amplitudes of ripples and amount of attenuation guaranteed in the stopband are changing in definite steps from one extreme value to another. The corresponding transfer-function poles remain on a circle.

In intermediate cases when the ripples in the passband and ripples in the stopband are arbitrary (more ripple may be accepted in the passband in order to get more attenuation in the stopband), the locus of poles is deformed into an ellipse.

Fig. 14—Properties of the family of Chebyshev filters: (a) attenuation shapes; (b) locus of the zeros of transmission; (c) normalized group delay versus Ω . Each attenuation shape in (a) corresponds to a similarly $I_{\rm exc}$ and $I_{\rm exc}$ of transmission locus main) and to a group delay characteristic in (c).

In the case of an arbitrary design with small ripples in the passband and guaranteed minimum in the stopband, the half-circle locus is deformed as shown in the second row of Fig. 14. In this case, the half axis of the "circle" along the real negative direction is longer than the axis along the imaginary direction.

The last row of Fig. 14 illustrates the degeneration of typical Chebyshev responses when limiting conditions are gradually applied. The filter with no ripples in the passband and no poles of attenuation outside of it degenerates into a power-term filter with maximally flat amplitude response and with the zeros of filtering located on a semicircle.

Phase and Group Delay

÷

A specific amplitude response, given by a and D vs frequency, does not describe the complete transmission property of a filter. Indeed, the filter discrimination factor is somewhat superficial because it describes only the gain and loss of the network. The phase characteristic which is included in the effective transmission factor, H, becomes very important when considering radar and communication systems, especially those using pulsed signals.

The plot of zeros and poles for the Chebyshev family of filters indicates that when a curve enters into the transition frequency region, it is sharper when the transfer-function poles are concentrated closer to the imaginary *s*-plane axis. In the proximity of the poles the effective phase angle changes more rapidly and the group time delay has high peaks.

A flat group delay is desirable because this signifies that all frequencies will be delayed the same amount while going through the filter. If the various frequencies are not delayed equally, dispersion results, and the output for a pulsed input does not retain its identity.

Figure 14(c) shows curves of the normalized group delay; it may be observed that relatively constant group delay in the passband can be reached only when one avoids using sharp attenuation curves. A transmission function of the Chebyshev family is thus optimum only from the point of view of the attenuation requirement but not from the point of view of the group delay.

The phase response of the ideal Gaussian filter is linear, and no overshoot will be produced as a result of rapid signal changes. Realizable all-pole Gaussian magnitude filters with a finite number of elements yield nonsymmetrical pulse responses because the phase is not sufficiently linear. The trailing edge of the output pulse is longer than the leading edge.

The phase response in finite-pole Bessel filters is more linear than that of the Gaussian magnitude type with an equal number of poles. The skirt of selectivity of the passband is sharper for the Bessel filter, but the attenuation cutoff for both filters is not very great. Both types have very poor attenuation characteristics (especially with a wide passband), but from the point of view of group-delay distortion or phase characteristics their pulse responses, in comparison with Chebyshev or Butterworth, are remarkably good. For purposes of comparison, the group delay of Bessel, Gaussian, Chebyshev, and Butterworth filters of second degree are plotted in Figs. 15, 16, 17 and 18. It should be noted that the group delay of the Bessel filter is flat at the center of the passband, while the Gaussian curve drops far off center frequencies and the Butterworth has a pronounced peak at the cutoff frequency.

Although the Bessel filter phase characteristic is greatly superior to that of the Chebyshev filter, its disadvantages preclude its use in most cases. The Bessel insertion-loss response in decibels versus frequency approximates a parabolic curve, so that its

Fig. 15-Bessel amplitude and group-delay response.

Fig. 16—Gaussian amplitude and group-delay response.

Fig. 17---Chebyshev amplitude and group-delay response.

Fig. 18—Butterworth amplitude and group-delay response.

voltage standing-wave ratio (VSWR) increases rapidly as the frequency deviates from center frequency. Over most of the 3-db bandwidth the VSWR and reflection coefficient are high. As a result, reflection interactions with a slightly mismatched load or generator may seriously affect the otherwise good phase-shift response of this type of filter. For a given selectivity, Bessel filters need more elements than the Chebyshev type. In fact, no matter how many elements are used, this type of filter cannot provide appreciably greater selectivity than a parabolic insertion-loss response curve. The multiple resonator structure for Bessel filters is highly unsymmetrical, with a very large variation in the cou-Jling elements from one end to the other. This large variation makes the design difficult, and values of • the couplings are more likely to be in error relative to each other.

The impulse response of an equal-ripple delay filter is quite symmetrical relative to the mean value

of group delay. The impulse response of a Bessel filter is not as symmetrical as that of the equalripple filter, although it shows more symmetry around the center, and that of the Gaussian filter, even for higher-order approximations, is the least symmetrical of the three. A plot of the impulse responses for these three filters (n = 3) is given in Fig. 19. For a larger number of poles (more complicated filters), the impulse responses become more and more similar, but with increasing complexity the equal-ripple delay response gives a more symmetrical pulse response. In the case of the equal-group-delay filter, the estimated overshoot will be comparable to the Bessel filter, but the steady-state amplitude response is somewhat better.

Simple Polynomial Filters. The conditions for Butterworth and Chebyshev response for the simple polynomial filters shown in Table III are derived in Appendix 3.

Zobel Filters. In image-parameter theory, the insertion loss is usually computed as the sum of the image attenuation, the reflection loss and the interaction loss. This method is useful for computing the loss of a filter whose constants have been determined and whose design is complete. It is not a convenient method for showing how the insertion loss varies with the choice of parameters. It is possible, however, to obtain complete insertion-loss formulas for multi-section image-parameter filters in a form suitable for study. A discussion of attenuation of Zobel filters is given in Appendix 4.

Coupling

Neither image-parameter theory nor modern synthesis theory requires a specific concept of coupling in order to design the filter or to explain its physical operation. So-called "half sections" or "full sections" can be connected together if they have ap-

316(4 		
First	$\begin{array}{c c} & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$	$1 + j\omega C \frac{R_1 R_2}{R_1 + R_2} = 1 + j\omega CR$
Second	$\begin{array}{c c} & & & \\ & & & \\ \hline \\ & & & \\$	$1 + j\omega \left(CR_p + \frac{L}{R_s} \right) - \omega^2 LCK$
Second	$\begin{array}{c} R_1 \\ \hline \\ \hline \\ V_1 \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$1+j\omega\left(CR_{\rho}+\frac{L}{R_{s}}\right)-\omega^{2}LCK'$
Third	$\begin{array}{c c} & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ V_1 & & & \\ \downarrow & & \\ \hline & & & \\ \downarrow & & \\ \end{array}$	$1 + j\omega \left[(C_1 + C_2) R_\rho + \frac{L}{R_s} \right] - \omega^2 \frac{L}{R_s} (C_1 R_1 + C_2 R_2) - j\omega^3 L C_1 C_2 R_\rho$

Table III—Simplest Polynomial Filters

74 ELECTRO-TECHNOLOGY JUNE 1964

propriate characteristic impedances. In a discussion of the polynomial filter, the term coupling loses its sense because filter components are a result of the basic design procedure. Coupling in modern filters refers only to the parasitic effects of one component upon another. The electronic engineer sometimes uses the degree of coupling to describe the particular response as over-coupled, under-coupled, critically or optimally coupled, and transitionally coupled, but even these descriptive terms are being replaced by Chebyshev or Butterworth responses.

The term coupling was re-introduced in network synthesis theory by Milton Dishal. There is no physical coupling between coil and capacitor in the sense of connection, but the numerical value of a coupling term has an effect on the bandwidth similar to that of the familiar coupling coefficient. The element values for ladder networks may be expressed so that every reactive component of each element of the filter is related to the reactive component of the immediately preceding element and to a definite bandwidth (such as the 3-db down value.) The numerical results are the normalized coefficients of coupling. Structures which may be normalized in terms of coupling include not only the bandpass configuration, where coupling is used in its original physical sense, but also the low-pass, high-pass, and band-reject structures. For the lowpass filter of Fig. 20, coupling is defined by the ratios

$$\frac{\Omega_{12}}{\Omega_{3db}} = k_{12}; \ \frac{\Omega_{23}}{\Omega_{3db}} = k_{23}; \ \frac{\Omega_{34}}{\Omega_{3db}} = k_{34}$$

where

$$\Omega_{12} = \frac{1}{\sqrt{C_1 L_2}}; \ \Omega_{23} = \frac{1}{\sqrt{L_2 C_3}}; \ \Omega_{34} = \frac{1}{\sqrt{C_3 L_4}}$$

In most high-frequency designs, especially the microwave type, the use of the normalized value of k may simplify the adjustment procedure since the numerical value of k could be directly applied to the tuning of the actual filter.

Coefficient of Coupling. For a magnetically resonant circuit, the value of the coefficient of coupling can be obtained from the theory of transformers:

$$k = \frac{M}{\sqrt{L_p L_s}}$$

Analogously, one can define the coefficient of coupling for the four other types of two-pole filters mentioned above.

In general, the degree of coupling or the coupling coefficient is the ratio of the reactance of the coupling element to the geometric mean of the opencircuit impedances from opposite terminals.

The coupling, K, will now be defined as

$$K = \frac{y}{\sqrt{g_1 g_2}}$$

where y is the coupling admittance and g_1 , g_2 are the input and output short-circuit admittances of the filter at resonance frequency. From

$$\frac{g_1}{\omega_m C_1} = d_1 = \frac{1}{Q_1}; \quad \frac{g_2}{\omega_m C_{11}} = d_2 = \frac{1}{Q_2}$$

it may be seen that

$$K = \frac{k}{\sqrt{d_1 d_2}} = k \sqrt{Q_1 Q_2}$$

Multi-Pole Filters

The design of multi-pole filters generally follows either of two different methods. In the synchronously tuned method, all the resonant circuits are tuned to the desired center frequency at each node. The symmetrically detuned method (staggered tuning) has one or more resonant circuits detuned symmetrically about center frequency. Strong coupling is equivalent to strong resonant detuning.

Both methods may arrive at the same amplitudefrequency response, but the absolute value of the output at center frequency is generally greater for the synchronously tuned filter. This is the reason for realizing only synchronously tuned filters in practice, especially when the network consists of more than two poles.

In order to understand the physical concept of coupling and selectivity, it is worthwhile to concentrate one's attention on simple bandpass filters in the form of a double-tuned circuit such as that generally used between amplifier stages and similar circuits.

A two-pole bandpass filter can produce the same amplitude-frequency response as a two-stage tuned amplifier with a single resonant circuit in each stage. Moreover, the response of several stages of single-tuned circuits in cascade can be replaced by a single filter with an equal number of resonant circuits, which may be coupled by either capacitive or inductive reactances; the method of coupling may alternate from each resonant circuit to the next as required by the situation.

Two basic assumptions will be used here. First, we will assume that coupling reactance is independent of frequency; the change in reactance is so small that, within the limits of the frequencies wherein the

Fig. 25 (....pole filter with shunt capachive coupling.

filter is operating, the change can be completely disregarded. Secondly, we will assume that each resonant circuit is coupled only with the circuit adjacent to it.

The general schematic of the filter with two antiresonant circuits is shown in Fig. 21. It can be shown that five different ways of coupling produce essentially the same responses and that all of these may be represented by the schematic of Fig. 21.

Fig. 25—Two-pole filter with shunt inductive coupling.

76 ELECTRO-TECHNOLOGY | JUNE 1964

Figs. 22 and 23 illustrate methods of capacitively coupling two resonant circuits. In Figs. 24 and 25, methods of inductively coupling the same circuits are shown. The three capacitors in Fig. 22 can be transformed into the T configuration of Fig. 23 by using the well known delta-star transformation. A similar transformation may be used for the inductive coupling networks in Figs. 24 and 25. Formulas to facilitate such transformations are shown in Fig. 26.

A two-pole filter with magnetic coupling between the first and second resonant circuits is shown in Fig. 27. From transformer theory, we know that two different values of the coupling coefficient can result. This results from the fact that the sign for mutual inductance, M, can be positive or negative and depends upon the polarity of the secondary winding. The value of y in Fig. 21 can therefore be either positive or negative. Very often, instead of pure inductive, pure capacitive, or even pure magnetic coupling, we have a mixture of couplings. This may be due to such factors as the presence of unavoidable distributed capacitance between the coils. Even in such cases, the general equivalent schematic in Fig. 21 is still valid since one type of reactance will generally predominate in each specific frequency range. When y is resonant in the proximity of the passband, one no longer has a two-pole filter, and this case will therefore not be considered here.

Formulas are shown in Figs. 22, 23, 24, 25, and 27 for the calculation of element values. Also

shown are the corresponding amplitude-frequency response curves. From these curves one can see in which direction the passband deviates from resonance. The effects of coupling on the center frequency and insertion loss of the filter are also evident. With increased value of coupling, insertion loss becomes lower. In the proximity of critical coupling, the bandwidth becomes larger and, finally, with a further increase in value of coupling, ripples in the passband will appear. In the case of the magnetic coupling shown in Fig. 27, the center frequency remains constant. In the case of the capacitive coupling of Fig. 22 and the parallel inductive coupling of Fig. 25, the center frequency goes down, and in the two remaining cases it goes up.

Filter Transformations

As was previously indicated, low-pass filters, through appropriate frequency and network transformations, can provide information for bandpass, high-pass and band-reject filters.

To transform low-pass filters into high-pass filters, it is necessary to use the frequency transformation

$$\Omega_{\rm HP} = \frac{1}{\Omega_{\rm LP}}$$

The normalized cutoff frequency of the high-pass filter is equal to that of the low-pass filter.

 $\Omega_{c(HP)} = \Omega_{c(LP)} = 1$

The resulting transformation of elements is given in the first two lines of Table IV.

Fig. 26—Equivalent schematics for various coupling configurations. Element values are given in a form suitable for performing transformations from one configuration to another.

Fig. 27—Two-pole filter with magnetic coupling.

With the frequency transformation

$$\Omega = a\left(\gamma - \frac{1}{\gamma}\right)$$

where γ is the new normalized frequency, the frequency characteristics of the low-pass filter will be transformed into bandpass characteristics. The normalized frequency of the low-pass filter, Ω_{γ} , corresponds to two frequencies in the bandpass characteristics are and $\frac{1}{2}$ are which are competizedly

teristics γ_{ν} and $\frac{1}{\gamma_{\nu}} = \gamma_{-\nu}$, which are geometrically symmetric since

$$\gamma = 1 = \gamma_{\nu} \gamma_{-\nu}$$

The transformation of the cutoff frequency can be made with the use of the expression

$$\Omega_c = 1 = a(\gamma_c - \gamma_{-c})$$

from which the constant of transformation, a, can be determined.

If the upper and lower cutoff frequencies f_c and f_{-c} are normalized with respect to the reference frequency f_b , where

then

$$\gamma_{c} = \frac{\int_{c}^{A} \sqrt{\int_{c} \int_{-c}}}{\int_{b} \gamma_{c}} = \frac{\sqrt{\int_{c} \int_{c}}}{\sqrt{\int_{c} \gamma_{c}}} = \frac{1}{\gamma_{-c}} \times$$

The normalized frequencies in the stopband such as Ω_s can be obtained in a similar way,

Table IV—Filter Transformations

$$\Omega_s = a(\gamma_s - \gamma_{-s})$$

and the relationship between the passband and the stopband limits is

$$\Omega_s = \frac{\gamma_s - \gamma_{-s}}{\gamma_c - \gamma_{-c}}$$

The normalized bandpass frequency γ_v can be found from values of Ω_v belonging to the low-pass filter

$$\gamma_{\pm v} = \pm \frac{\Omega_v}{2a} + \sqrt{\left(\frac{\Omega_v}{2a}\right)^2}$$

Low-pass to bandpass network-element transformations are summarized in Table IV.

Similar relationships are valid for the low-pass to bandstop transformation. They are given by the equations 1

$$\Omega = \frac{1}{a\left(\gamma - \frac{1}{\gamma}\right)}$$

1.

Li

$$\gamma_{\pm v} = \pm \frac{1}{2a\Omega_v} + \sqrt{\left(\frac{1}{2a\Omega_v}\right)^2}$$

where v = 1, 2. The set of formulas and the elements involved in this transformation are given in Table IV.

The network components given in Table IV, obtained after transformation, and also the normalized frequencies Ω_{y} , γ_{y} , may be used to translate a network to a desired frequency range (by choice of

Transformation	Low-poss	Schemotic	Value	
Low-poss to high-pass		 	$L = \frac{1}{C'}$ $C = \frac{1}{L'}$	
Low-poss to bandpass	$\begin{array}{c} c' \\ c'$	 $ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & &$	$C = \frac{1}{L} = oC' \qquad \gamma = 1$ $L = \frac{1}{C} = oL' \qquad \gamma = 1$ $C_{+} = \frac{1}{L_{-}} = oC'(1 - \gamma_{1}^{2})$ $C_{-} = \frac{1}{L_{+}} = oC'(1 + \gamma_{1}^{2})$ $L_{+} = \frac{1}{C_{-}} = oL'(1 + \gamma_{1}^{2})$ $L_{-} = oL'(1 + \gamma_{2}^{2})$ $\gamma_{2,1} = \sqrt{\left(\frac{\Omega}{2\sigma}\right)^{2} + 1} \pm \frac{\Omega}{2\sigma}$	$t_{1,p}(f) =$ = $t_{10}(f) =$ = $t_{10}(f) =$ = $t_{10}(f) =$ = $t_{10}(f) =$
Low-pass to bandstop		 $\begin{array}{c} C \\ L \\ C \\$	$C = \frac{1}{L} = \frac{C'}{a} \qquad y = 1$ $L = \frac{1}{C} = \frac{L'}{a} \qquad y = 1$ $C_{+} = \frac{1}{L_{-}} = \frac{a}{L'} (1 + y_{-}^{2})$ $C_{-} = \frac{1}{L_{+}} = \frac{a}{L'} (1 + y_{-}^{2})$ $L_{+} = \frac{1}{C_{-}} = \frac{a}{C'} (1 + y_{-}^{2})$ $L_{-} = \frac{1}{C_{+}} = \frac{a}{C'} (1 + y_{-}^{2})$ $Y_{2,1} = \sqrt{\left(\frac{1}{2aB}\right)^{2} + 1} = \frac{1}{2aB}$	

and

78 ELECTRO-TECHNOLOGY | JUNE 1964

 f_b) and a desired impedance level (by choice of R_b). For low-pass and high-pass filters $f_b = f_c(\Omega_c)$. For bandpass and band-reject filters,

$$f_{p} = f_{c}f_{-c}$$

$$L_{b} = \frac{R_{b}}{2\pi f_{b}}$$

$$C_{b} = \frac{1}{2\pi f_{c}R_{b}}$$

Realization and Narrow-Band Approximation

The direct, conventional low-pass to bandpass transformation, while correct theoretically, is not always justified practically. The element values may be too small or too large. The parasitic capacitance to ground cannot be taken into account and therefore may distort the response. The node between a capacitor and a coil in a series arm becomes very sensitive to stray capacitance at some frequencies, and the quality of the series arm has to be very high in order to produce a low level of insertion loss in the passband. It is therefore desirable to simplify the network realization in order to remove the selectivity from the series arm, and to substitute added selectivity in the parallel arms.

The conventional transformation for a thirdorder low-pass filter to a bandpass realization requires three coils and three capacitors. Essentially the same kind of response curve can be realized, however, with three parallel resonators coupled together by mutual inductance, by capacitors, by inductances, or by inductances and capacitances as shown in Fig. 28.

Variation of the coupling reactances with frequency causes the response of the filter to be nonsymmetrical, although a close approximation of this effect may be taken into account. The original schematic with three coils and three capacitors will theoretically guarantee the ideal polynomial response. The schematic with coils or capacitors in the series arm is only a narrow-band approximation and realizes the transformed theoretical low-pass filter response only for a limited bandwidth. Nevertheless, good accuracy is maintained over a wide range (20 per cent) of center frequency. The design, almost by necessity, must use coupling circuit terminology, especially for microwave-frequency filters where the resonators are realized in the form of cavities.

For wideband filters, especially at low frequencies where a lumped-element technique could be used, the direct transformation is useful. It does not create too much of a problem except that the number of bulky and expensive coils (especially at very low frequencies) will complicate the realization.

M. Dishal has devised a synthesis procedure for the dissipative (non-ideal) bandpass filter. [2] His method is equally good for wideband and narrowband types and has proven to be practical for the design engineer. Dishal uses a 3-db bandwidth normalization and normalized coupling. The minimum number of resonators may be obtained from equations or from curves. After the number of resonators is determined, the components can be found. To obtain the first resonator for the narrowband type of schematic shown in Fig. 28, the Q factor at the first node is selected. This means that the source resistance determines the first-node inductance and capacitance. For a very small value of percentage bandwidth, the ratio of coupling to shunt elements is approximately reciprocal to percentage bandwidth and is very small. Physically, this means that capacitor coupling is not always realizable and one must sometimes employ mutual inductive coupling. After having determined the number of resonators, type of coupling and input Q, the remainder of the circuit elements are rigidly determined by a step-by-step design procedure with known values of loaded Q, k, and M.

To obtain the results predicted by theory, the unloaded Q of each element must be greater than a certain minimum. For internal reactances of lowpass filters, this minimum Q is q_{min} ; for internal resonators of bandpass circuits it is $q_{min}(f_o/b\omega_{3db})$.

A design example illustrating the use of Dishal's method is given in Appendix 5.

Physical Problems of Filter Design

Since coils and capacitors are still the most commonly used passive network elements, and we are concerned with filters handling a large amount of reactive power, our attention must be directed towards utilizing the best reactive element. This may be a coil with a ferramic core, a coaxial resonator, a helical resonator, a waveguide or a crystal resonator, depending upon the application.

The importance of the physical aspect of power

Fig. 32—Equivalent circuits for an inductor (a) and a capacitor (b) which include the effects of impurity elements.

Fig. 33—Attenuation characteristics of a bandpass filter as a function of the quality factor of the circuit.

Fig. 34—Crystal resonator equivalent circuit and reactance curve.

transformation inside a reactive network should be emphasized. For each watt of power dissipated inside of the filter, the reactive power may be as high as 10,000 volt-amperes. This ratio of dissipative to reactive power requires that the Q of the components be at least 10,000. Even with such a large Q, half of the input power will be lost at the 3-db point. Good-quality conventional coils can be made with practical values of Q no higher than 500. The problem, therefore, is to concentrate reactive power in a few high-quality elements and to make these filter elements convert most of the reactive power concentrated in the region of the cutoffs.

When the amount of reactive power circulating inside a two-terminal network is known, the value of reactance below or above resonator frequency can be determined. This value is proportional to the algebraic difference between magnetic and electric power. The sum of the reactive power in the reactive dipole, on the other hand, determines the sharpness of the reactance variation of the same network. For a reactive four-terminal network, the total reactive power is proportional to the group delay. The group delay can therefore be interpreted as a measure of the efficiency of energy transmission. This efficiency is defined by the ratio of transmitted real power to the reactive energy required by the realpower transmission. In minimum phase networks (practically all types of filters), the attenuation and phase are interdependent. Thus it can be concluded that, in minimum phase filters, the required conversion of reactive power may be found from the attenuation curve or curve of selectivity. In the region of the cutoffs the converted reactive power assumes large values. If the response curve is very sharp, the network must balance this reactive power so that magnetic and electric power will circulate (exchange) inside the filter and not reach the load.

1000

These considerations provide a physical explanation of the difficulty encountered by the designer when he trys to obtain good matching near cutoff frequency. The absolute value of the difference between electric and magnetic power is an appropriate criterion for good matching.

Physical Elements of the Filter. The main elements of a filter are reactances: lumped capacitance and lumped inductance. It is possible to design some filters by using only capacitors and resistors. This combination is especially useful in the case of active networks or active filters. Regular passive filters require both types of reactance.

The simplest low-pass filter has two arms as shown in Fig. 29. The series arm has an inductor and the shunt arm a capacitor. In the case of a simple high-pass filter, the series arm consists of a capacitor and the shunt arm consists of an inductor (Fig. 30). An example of the simplest bandpass filter is shown in Fig. 31.

To a first approximation, lumped inductance and capacitance can be considered as pure reactances, but closer investigation reveals that losses and reactive impurities are also present. The ordinary inductor at relatively low frequencies is wound on a magnetic core (powder iron or ferramic); other inductors are simply single-layer solenoids wound on a nonmagnetic coil form. In both cases, although the losses are very low in comparison with the value of reactance, they cannot be neglected, especially when one designs a very-narrow-band filter or desires a very sharp response curve.

Losses tend to decrease the rate of attenuation rolloff, increase the attenuation within the passband, and, in certain cases, prohibit the realization of very-narrow-bandpass filters. The parasitic effect of distributed capacitance across the coil or series lead inductance in capacitors is damaging in another respect. In the low-pass filter, parasitics will create the effect of a parallel resonant circuit instead of a coil. The filter may thus provide unexpected rejection at certain frequencies in the stopband, or even in the passband, if the self-resonant frequency of such a coil is sufficiently low. Parasitic reactance in the lumped components produces distortion of the amplitude response and may destroy the network response altogether if not neutralized or properly taken into consideration.

Equivalent circuits for an inductor and a capacitor are shown, with impurities taken into account, in Fig. 32. The conventional measure of the quality of any reactance is the quality factor Q which describes how many times the reactance of a coil or capacitor is greater than the resistance. The most common value of Q in the conventional inductor at radio frequencies is 50-300. The Q factor for the capacitor at the same frequency is usually higher: 500-5000. The higher these values are, the better the filters that can be designed. Figure 33 illustrates the effect of the Q factor on the shape of the response of a bandpass filter.

The demand for quality factor in ordinary lumped components, especially coils, has intensified research to find some substitute for the inductor and capacitor. Historically, the first and most successful substitute was the piezolectric crystal; next were magnetostrictive components and electromechanical devices. Lumped elements are the oldest filter elements, and they remain the most widely used at low frequencies.

Experience proves that, for example, a very good

bandpass filter can be made when its components have a Q factor not less than 20 to 25 times $f_q/\Delta f$ where f_{α} is the center frequency of the filter and Δf is the bandwidth (passband). For the same bandwidth and attenuation characteristic, the filter with the lowest center frequency will need the lowest quality factor. If, for example, $f_{\rho} = 10,000$ cycles and $\Delta f = 3000$ cycles, the Q factor cannot be less than 66. When an element that meets these specifications is used, a very good bandpass filter can be designed for a commercial telephone signal. If the frequency $f_o = 150,000$ cycles and $\Delta f = 3000$ cycles, the Q factor has to be greater than 1000. Even the best coils with ferramic core material cannot provide a Q factor greater than 600, and, therefore, a conventional element cannot be used in such a filter.

Crystal Filters

The equivalent schematic of a piezoelectric resonator is shown in Fig. 34. There are three reactances in this first-approximation schematic. L and C are the motional parameters and C_o is a capacitance across the crystal which can be considered a parasitic parameter. The piezoelectric resonator has a very high Q factor, at least several thousand, and it is very stable with time and temperature conditions. With such resonators, filters having any desired selectivity and extremely small bandwidths can be designed and built.

The piezoelectric crystal exhibits some unpredictable and undesirable modes of oscillation, which is a very serious limitation of ordinary crystals. Some of these spurious modes are very close to the fundamental frequency. Another limitation of the device is that the ratio between the parasitic capacitance and motional capacitance cannot be made less than a certain value. This value determines the possible bandwidth of the filter. In the low-frequency range (up to 200 kc), this bandwidth can be no more than about 10 per cent. At higher frequencies the percentage bandwidth will be less and less, and at 30 Mc it can be only a fraction of one per cent even

when all supplementary measures are taken into consideration.

Because of such factors as spurious oscillation and small physical crystal size, crystal resonators do not operate satisfactorily at very high frequencies. Coaxial and helical resonators are generally used at these frequencies.

The most efficient use of the quartz crystal is obtained under the following conditions:

• The quartz crystal dissipates the largest part of the reactive power converted at cutoff frequency.

• A high-quality stable quartz resonator in a ladder schematic produces the critical (and sharpest) attenuation response pole.

• The bandwidth of the network involved is as large as possible.

Simultaneous satisfaction of these three requirements was impossible for a long time, but Fig. 35 illustrates a solution now available. Here, a filter used for carrier communication has been designed by using network transformations. The section shown in Fig. 35(a) produces a sharp pole at f_1 and another pole, less sharp, at f_2 . The transformed network using a quartz crystal is shown in Fig. 35(b). Both networks are identical if certain conditions are satisfied. Pole f_2 [Fig. 35(a)] must be placed so that the input impedance from the right side of the network becomes zero at frequency f_1 . In other words, the series combination of the two parallel networks (L_2C_2 and L_3C_3) must have a series resonance at f_1 . In addition, the input impedance from the right side of Fig. 35(b) must have a pole at frequency f_2 ; *i.e.*, the series and parallel reactances of f_2 must produce a pole.

In Fig. 35(a) the sharpest pole is produced by L_1C_1 . In Fig. 35(b), the sharpest pole is produced by L_3C_3 . The calculated ratio C_2/C_3 is very large, and additional capacitance may be added, if desired, since the capacitance ratio of an x-cut quartz crystal is only about 140. The capacitance ratio C_p/C_s ; (C_2/C_3) is, to a first approximation, inversely proportional to the distance between the pole frequencies f_1 and f_2 . The distance between f_1 and f_2 could be several times larger than that shown in Fig. 35(a) since a practical ratio between parallel and series capacitance is about 200. With increasing bandwidth the ratio becomes more unfavorable; for a bandwidth of 60 per cent the ratio C_p/C_s is so small that the quartz can no longer be used.

A typical arrangement for inserting a crystal in a

ladder filter is shown in Fig. 36; Fig. 37 is the corresponding reactance diagram. The crystal provides a trap for the energy around its resonant frequency, f_c . This results in zero transmission through the filter at f_c (the peak of attenuation in the filter). The same crystal will also provide two parallel resonances, one below f_c , f_a , and the other above f_c , f_s . Since f_s is in the stopband, its presence will tend to decrease the attenuation. The addition of one parallel resonance in the series arm of the ladder filter can eliminate the effect of one parallel resonance of the crystal. The high-quality series resonance of the crystal can then be used for the filter without being deteriorated by undesirable phenomena.

Figure 38 shows an equivalent circuit which ac-

counts for a piezoelectric resonator. The problem of realization reduces itself to that of modifying a conventional LC network in such a way that the schematic of Fig. 38 is obtained.

A design procedure which finally results in the desired modification is given in Fig. 39. Here the original schematic is represented in ladder form. Two sections with different peaks of attenuation $(f_c \text{ and } f_s)$ are to be connected. The design procedure follows the steps shown in Fig. 39. The element across the line in the center of the final network is a nonconventional dipole which produces an unusually sharp peak of attenuation.

A filter section which produces a peak of attenuation on the high-frequency side of the passband is

Fig. 40—Filter section, with equivalent crystal resonator, having peak attenuation on the high-frequency side of the passband.

Fig. 41—Filter section, with equivalent crystal resonator, having peak attenuation on the low-frequency side of the passband.

shown in Fig. 40, along with the appropriate design formulas and response curves. Similar information on a filter section which produces a peak of attenuation on the low-frequency side of the passband is given in Fig. 41, ∎

Appendix 1—Basic Filter Relationships

The usual operating conditions for a filter are shown in Fig. 1-1 where R_1 and R_2 are pure resistances. A relation between the power P_2 dissipated in the load resistance R_{2} and the output voltage is

$$P_2 = \frac{V_2}{R}$$

The maximum power P_m that can be delivered by the signal source

$$P_m = \frac{V_o^2}{4R_1}$$
(1)

leads to the definition of the effective transmission factor H:

$$H = \sqrt{\frac{P_m}{P_2}} \tag{2}$$

The natural logarithm of H is called the effective transmission constant: $g = \ln H$. Its real part, $\ln |H|$, is the effective attenuation a, and its imaginary part $j \nmid H$, is the effective phase angle b.

$$g = a + jb = \ln |H| + j \notin H$$

$$= \ln \frac{V_o}{2V_2} + \ln \sqrt{\frac{R_2}{R_1}}$$

$$(3)$$

$$H = e^{g}$$

The attenuation *a* is expressed here in nepers. The analogous expression in decibels is

$$A = 20 \log_{10} |H|$$
, db

The effective attenuation can never become negative. The voltage insertion loss is equal to the effective attenuation when $R_2 = R_1$. A relation between the input impedance Z of the four-

terminal network and the resistance R, which represents

the source impedance, defines the input reflection factor ρ .

$$\rho = \frac{R - Z}{R + Z} \tag{4}$$

A non-zero reflection factor signifies physically that the maximum deliverable power P_m is not being transmitted through the network to the output since a portion Pr is being reflected. Thus, the definition of the reflection constant, g,, is

$$g_r = a_e + jb_e = \ln \frac{1}{\rho} = \ln \sqrt{\frac{P_m}{P_r}}$$
 (5)

where a_e is echo attenuation and b_e is the corresponding phase angle.

Let us assume that input impedance of the filter is Zand the source impedance connected to the filter is Z_{o} (Fig. 1-2). When Z = R = 1, the voltage V across the filter will be $V = V_o/2$ where V_o is the source voltage. For this condition $V - V_o/2 = 0$. If $Z \neq R$, then

$$V = \frac{V_o}{2} - \left(V - \frac{V_o}{2}\right)$$

where

L

$$V - \frac{V_o}{2} \neq 0$$

and we have the ratio

$$\frac{\frac{V_o}{2}}{\frac{V_o}{2}} = \frac{V_o}{2V - V_o} = \frac{V_o}{2V_o \frac{Z}{1 + Z} - V_o}$$
$$= \frac{1 + Z}{2Z - 1 - Z} = \frac{Z + 1}{Z - 1} = \frac{1}{\rho}$$

The ratio between the reflected power and the power dissipated in the load resistance (P_r/P_2) is used to define a characteristic factor (g_k) where

$$g_k = a_k + jb_k = \ln \frac{1}{\rho} = \ln \sqrt{\frac{P_r}{P_2}}$$
(6)

Here a_k is the characteristic attenuation, and b_k is the characteristic phase angle.

Equations (2), (5) and (6) are related as follows:

a, nepers	$D = \sqrt{e^{2\beta} - 1}$
0.000	0.000
0.005	0.101
0.010	0.142
0.015	0.175
0.00	0.00
0.05	0.32
0.10	0.47
0.15	0.59
0.20	0.70
1.00	2.53
1.25	3.34
1.50	4.37
1.75	5.67
2.00	7.3
2.50	12.1
3.00	20.1
3.50	33.1
4.00	54.6

84 ELECTRO-TECHNOLOGY JUNE 1964

an an an San an San an San an a		
ρ, per cent	a_e , nepers	Ae, decibets
1	4.6	39.9
2	3.9	33.8
3	3.5	30.3
4	3.2	27.7
5	3.0	26.0
8	2,5	21.7
10	2.3	199
15	1.9	16.5
20	1.6	13.85
25	1.35	11.7
50	0.55	4.77

$$|H|^{2} = \left|\frac{P_{m}}{P_{2}}\right| = e^{2a}$$

$$\left|\frac{1}{\rho}\right|^{2} = \left|\frac{P_{m}}{P_{r}}\right| = e^{2a}e$$

$$|D|^{2} = \left|\frac{P_{r}}{P_{2}}\right| = e^{2a}k$$

$$|H\rho|^{2} = e^{2a-2a}e = |D|^{2} = e^{2a}k$$

where $a - a_e = a_k$ is in nepers, and D is the filter discrimination factor.

It is seen that the effective attenuation a is equal to the sum of the echo attenuation a_e and the characteristic attenuation a_k .

$$a = a_e + a_k, \text{ nepers}$$

$$A = A_e + A_k, \text{ decibels}$$
(7)

If the filter consists of reactive circuit elements, no power can be dissipated within the four-terminal network. Since R_1 and R_2 are assumed to be pure resistances, all power values under consideration are effective values, and the difference between the maximum deliverable source power P_m and the reflected power P, must be equal to P_2 , the power which passes through the network and arrives at the output load. According to Eq (7),

$$|P_m| - |P_r| = |P_2|$$

$$|P_m| = |P_2| + |P_r| = |P_m| \cdot (e^{-2a} + e^{-2a}e)$$

For filters with lossless elements, every value of effective attenuation a corresponds to a certain value of echo attenuation according to the relation:

$$e^{-2a} + e^{-2a}e = \left|\frac{1}{H}\right|^2 + |\rho|^2 = 1$$

1 + |H\rho|^2 = |H|^2. (8)

from which it follows that

$$|H|^{2} = 1 + |D|^{2}$$
(9)

In order to avoid the use of absolute-value notation, we will equate $|D|^2 = D^2$ where D is the filter discrimination factor.

$$D = \sqrt{e^{2a} - 1} = \sqrt{\frac{P_m - P_2}{P_2}}$$

Table A gives the numerical relationship between attenuation a, in nepers, and the filter discrimination factor D. D is a function of effective attenuation and increases from 0 to ∞ when the value of attenuation grows in the same direction (from 0 to ∞). $a = \ln \sqrt{1 + D}$,

or

or

$$A = 10 \log_{10}(1 + D^2)$$
 (10)

Equation (7) also yields

$$a = \ln \sqrt{1 - \rho^2} = \ln \sqrt{1 - e^{-2a_e}}$$

$$A = -10 \log_{10}(1 - \rho^2)$$
(11)

Table B gives the numerical relationship between values of ρ , a_{ρ} and A_{ρ} .

The effective transmission factor H and the filter discrimination factor D are both functions of the frequency f, or the angular frequency $\omega = 2\pi f$. Both H and D are needed for the determination of quantities such as impedance and admittance which fully characterize the four-terminal network and from which the circuit element values can be derived.

Appendix 2—Use of the Complex Frequency Plane in Filter Design

Real networks operate with real voltages and currents which are functions of time, but the idealized mathematical models involved in polynomial synthesis operate with fictitious currents and voltages which are neither real nor functions of time. In such models, these parameters are functions of the complex variable s. In order to obtain real currents and voltages from complex values, certain mathematical transformations have to be used. While the mathematical model has no resemblance to reality, it greatly simplifies prediction about the behavior of the actual networks.

A point $s = \sigma + j\omega$ in the S plane may be represented by the product of a sinusoid and an exponential $u = e^{\sigma t}$ sin ωt . If σ is negative, the amplitude of u decreases exponentially with time; if σ is positive, u increases exponentially. This behavior can serve as a description of the complex frequency s. A complex response function R(s)of any network can be described as the ratio of any current or voltage in a network to any other, and all response functions are thus ratios of polynomials in s (complex frequencies).

$$R(s) = \frac{P(s)}{Q(s)} \tag{12}$$

where P(s) and Q(s) are polynomials.

Any polynomial can be written in terms of its roots.

$$P(s) = as^{n} + bs^{n-1} + cs^{n-2} + \dots + es + f$$

= $a(s - r_1)(s - r_2)(s - r_3) \cdots (s - r_n)$

where $r_1, r_2, r_3, \dots, r_n$ are the roots of P(s). The polynomials in Eq (12) can be factored and written in the following form:

$$R(s) = A \frac{(s - p_1)(s - p_2)\cdots(s - p_p)}{(s - q_1)(s - q_2)\cdots(s - q_q)}$$

where p_1, p_2 , etc. are the roots of P_s , and q_1, q_2 , etc. are the roots of Q(s). The constant factor A (the ratio of the coefficients) serves only to change the amplitude of R(s)but has no bearing on the form of the response. Whenever $s = p_k$, R(s) becomes equal to zero; these specific values of s are called zeros of the response. Whenever

ELECTRO-TECHNOLOGY JUNE 1964 85

 $s = q_k$, R(s) becomes infinite; these particular values of s are called poles of the response. No matter how complicated the response function is, it can be expressed uniquely in terms of its poles, zeros and a constant multiplier. The number of poles and zeros is exactly equal if the poles and zeros at infinity are included. The simplest possible filter has only a single pole and hence only a single zero.

The pole-zero concept is very useful, because it permits the response to be expressed in analytical form. For a passive network the poles of the transfer function must always lie to the left of the imaginary axis. They cannot lie on the imaginary axis except as an approximation. Poles on the imaginary axis do not physically exist for passive networks; they would correspond to a tank circuit with infinite quality factor. Only in an active network can a pole lie on the imaginary axis.

If the filter consists of a finite number of lumped linear elements, it can be expressed with the help of three real polynomials, E, P, and F.

$$H = \frac{E}{P}; Z_{\text{in}} = \frac{E+F}{E-F}$$

Here H is the coefficient of effective transmission and Z_{in} is the normal input impedance. Furthermore,

$$e^{2a} = 1 + D^2$$

where $a = \ln H$ is the effective attenuation of the filter, and $D = \frac{F}{R}$ is the filter discrimination function.

For a reactive network the polynomials are related in the following way:

$$E(s)E(-s) = P(s)P(-s) + F(s)F(-s)$$
(13)

If polynomials P, E, F are known, it is possible to find all the elements of the network, and to determine its schematic arrangement.

The problem of synthesis consists in finding a filtering system which has the minimum number of elements essential for effective attenuation but which does not have more than the given a_{max} in the passband nor less than the given a_{min} in the stopband. This problem can be separated into three parts:

1. Finding the best approximation of the given requirements in the form of a rational function D = F/P.

2. Determining the polynomial E(s) by Eq (13).

3. Determining the filter system according to the polynomials P, E, F.

The roots of E(s) equal the roots of the system's characteristic equation and correspond to the frequencies of the free oscillations which may occur in a charged network during transition processes. Therefore, we will call E(s) the characteristic polynomial of the network. Since in a passive quadripole network the free oscillations should be damped, the real part of the roots of E(s)should be negative. This condition makes it possible to determine the polynomial E(s) by the known roots of the right-hand part of Eq (13). All the roots with a negative real part correspond to polynomial E(s), and those within a positive real part correspond to polynomial E(-s). Thus, the whole problem boils down to finding the roots of the right hand part of Eq (13). When the number of pairs of complex roots exceeds three, calculations become very complicated.

Appendix 3—Simplest Polynomial Filters

The first filter network shown in Table III is known as a first-order filter.

The effective transmission factor H, which defines the behavior of this filter network, is

$$H = 1 + j\omega C \frac{R_1 R_2}{R_1 + R_2}$$

or simply

$$H = 1 + j\omega CR$$

The presence of j in this expression shows that there is a phase shift introduced by the use of the filter.

The effective attenuation in decibels is

$$A = 20 \log |H| = 10 \log(1 + \omega^2 C^2 R^2)$$

Second-Order Filters. For the second-order filter shown in Table III, the quantity H will be

$$H = 1 + j\omega \left(C \frac{R_1 R_2}{R_1 + R_2} + \frac{L}{R_1 + R_2} \right) - \omega^2 L C \frac{R_2}{R_1 + R_2}$$

This expression can be made to look simpler by substituting

$$\frac{R_1 R_2}{R_1 + R_2} = R_p$$
$$R_1 + R_2 = R_s$$

and

$$\frac{R_2}{R_1 + R_2} = K$$

$$H = 1 + j\omega \left(CR_p + \frac{L}{R_s} \right) - \omega^2 LCK$$

To obtain the expression for effective attenuation we must eliminate *j* by multiplying by the complex conjugate:

$$|H|^{2} = 1 + \omega^{2} \left[\left(CR_{p} + \frac{L}{R_{s}} \right)^{2} - 2LCK \right] + \omega^{4}L^{2}C^{2}K^{2}$$

The effective attenuation is

$$4 = 10 \log |H|^2$$

The transmission factor H can be more compactly expressed in the form

$$|H|^2 = 1 + \alpha\omega^2 + \beta\omega^4$$

where α and β may be chosen so that we get a Butterworth or Chebyshev response as desired. Mathematically, a Butterworth response is simply $1 + \omega^{2n}$ which means that for n = 2 the value of α must be set equal to 0. This being the case,

 $A = 10 \log(1 + \omega^4 L^2 C^2 K^2)$

where

$$CR_{p} + \frac{L}{R_{s}} = 2LCK$$

Third-Order Filters. Adding one more capacitor to the previous circuit results in the third-order filter (see Table III), for which the transmission factor H becomes

$$H = 1 + j\omega \left[(C_1 + C_2)R_{\rho} + \frac{L}{R_s} \right]$$
$$- \omega^2 \frac{L}{R_s} (C_1R_1 + C_2R_2) - j\omega^3 L C_1 C_2 R_{\rho}$$

The absolute value can be found by the same procedure we used before.

86 ELECTRO-TECHNOLOGY | JUNE 1964

$$|H|^{2} = 1 + \omega^{2} \left\{ \left[(C_{1} + C_{2})R_{p} + \frac{L}{R_{s}} \right]^{2} - \frac{2L(C_{1}R_{1} + C_{2}R_{2})}{R_{s}} \right] + \omega^{4} \left\{ \frac{L^{2}(C_{1}R_{1} + C_{2}R_{2})^{2}}{R_{s}^{2}} - 2LC_{1}C_{2} \left[(C_{1} + C_{2})R_{p} + \frac{L}{R_{s}} \right] R_{1} \right\} + \omega^{6}L^{2}C_{1}^{2}C_{2}^{2}R_{p}^{2} + \beta\omega^{4} + \gamma\omega^{6}$$

Here α and β must be set equal to 0.

The response of the third-order Butterworth filter is then expressed by

$$A = 10 \log(1 + \omega^6 L^2 C_1^2 C_2^2 R_n^2)$$

Chebyshev Polynomials. The equation for the all-pole (transfer function) filter always takes the general form

$$|H|^2 = a_0 + a_1\omega^2 + a_2\omega^4 + \dots + a_n\omega^{2n}$$

where *n* is the order of the network and a_1, a_2, a_n depend on the resistances, capacitances and inductances. Most low-pass filters have no attenuation at zero frequency; in such cases the term a_o is unity.

For the second-order filter, the Chebyshev polynomial to consider is that of the fourth order:

$$C_{2n}(\Omega) = C_4(\Omega) = 8\Omega^4 - 8\Omega^2 + 1$$

For this polynomial it is noted that at

$$\Omega = 0$$
 $C_4(0) = 1$
 $\Omega = 1$ $C_4(1) = 1$
 $\Omega = 0.71$ $C_4(0.71) = -1$
 $\Omega > 1$ $C_4(\Omega > 1)$: increases rapidly

For all positive values of Ω less than unity, the approximating function

$$1 - t + tC_4(\Omega)$$
 (where $t = \frac{\epsilon^2}{1 + \epsilon^2}$)

will lie between 1 and 1 - 2t, and the maximum attenuation in the passband is

$$A = \pm 10 \log(1 - 2t)$$

If the value of the ripple a_{max} is 1.25 db, the corresponding t is 0.125. The approximation function becomes

$$1 - 0.125 + 0.125(8\Omega^4 - 8\Omega^2 + 1) = 1 - \Omega^2 + \Omega^4$$

Using $|H|^2$ for the second-order filter as given above, and taking $R_2 = \infty$, so that K = 1, we have

$$|H|^{2} = 1 + \omega^{2}[(CR_{1})^{2} - 2LC] + \omega^{4}L^{2}C^{2}$$

Comparing this with

$$1 - \Omega^2 + \Omega^4$$

we see that for identity the following relations must hold:

$$\Omega^4 = \omega^4 L^2 C^2$$

$$\Omega^2 = (2LC - C^2 R_1^2) \omega^2$$

$$\omega^2 LC = (2LC - C^2 R_1^2) \omega^2$$

$$L = C R_1^2$$

The third-order filter is related to the Chebyshev poly-

nomial of the sixth order, $C_6(\Omega)$. For $\Omega = 1$, $C_6(\Omega) = -1$, so that we consider

$$1 + t + tC_6(\Omega)$$

which oscillates between 1 and 1 + 2t. Therefore, we have

$$1 + 18t\Omega^2 - 48t\Omega^4 + 32t\Omega^6$$

For t = 1/16, which corresponds to ± 0.25 db, the condition for Chebyshev response becomes

$$\omega^{6}L^{2}C_{1}^{2}C_{2}^{2}R_{1}^{2} = 2\Omega^{6}$$

$$2\omega^{4}LC_{1}C_{2}(C_{1} + C_{2})R_{1} = 3\Omega^{4}$$

$$\omega^{2}(C_{1} + C_{2})^{2}R_{1}^{2} = \Omega^{2}$$

We can see that, even in its simplest forms, the equations become very cumbersome.

Appendix 4—Attenuation of Zobel Filters

Insertion-loss formulas for Zobel filters are obtained with the following equations. For one, two, or three pi sections,

$$\pm D = -\Omega \left[(1 - \Omega^2) \frac{R}{Z_r} - \frac{Z_r}{R} \right]$$
(14)

$$\pm D = -\Omega(2 - 4\Omega^2) \left[(1 - \Omega^2) \frac{R}{Z_{\pi}} - \frac{Z_{\pi}}{R} \right]$$
(15)

 $\pm D = -\Omega(3 - 4\Omega^2)(1 - 4\Omega^2)$

Н

$$\cdot \left[(1 - \Omega^2) \frac{R}{Z_r} - \frac{Z_r}{R} \right] \quad (16)$$

Equation (14) describes the filtering function for a single pi section while Eqs (15) and (16) refer to two and three pi sections. In each case, $2 \ge Z_x/R \ge 1$.

The corresponding expressions for T sections are

$$\pm D = \Omega \left[(1 - \Omega^2) \frac{Z_{\rm T}}{R} - \frac{R}{Z_{\rm T}} \right]$$
(17)

$$\pm D = \Omega (2 - 4\Omega^2) \left[(1 - \Omega^2) \frac{Z_{\rm T}}{R} - \frac{R}{Z_{\rm T}} \right]$$
(18)

$$\pm D = \Omega(3 - 4\Omega^{2})(1 - 4\Omega^{2}) \cdot \left[(1 - \Omega^{2}) \frac{Z_{T}}{R} - \frac{R}{Z_{T}} \right]$$
(19)

Equation (17) gives the filtering function for a single T section; Eqs (18) and (19) give the functions for two- and three-section T filters.

These expressions describe the peaks and valleys of attenuation in essentially the same way as the familiar curves of the Chebyshev filter with one important exception. The values of the ripples are not equal.

Fig. 4-2—Passband insertion loss of the lowpass Zobel filter with two sections.

Fig. 4-3—Typical filter specification and Zobel design parameters.

Fig. 4-4—Effective attenuation of the Zobel filter as a function of frequency and design resistance.

For the case of the two *m*-derived sections shown in the circuit of Fig. 4-1, Saraga gives the following formulas: [1]

$$U = \frac{X_x}{R} = -r \frac{m_1 + m_2}{1 + m_1 m_2} \cdot \frac{\Omega}{\Omega^2 - \frac{1}{1 + m_1 m_2}}$$
(20)
$$V = \frac{X_y}{R} = -r \frac{1 + m_1 m_2}{m_1 + m_2} \cdot \frac{\Omega^2 - \frac{1}{1 + m_1 m_2}}{\Omega(\Omega^2 - 1)}$$
(21)

Here R is the design resistance of the filter sections, R_1 is the resistance of the generator and load, m_1 and m_2 are the m values of the two Zobel sections, $X_x X_y$ are the series and diagonal arms of the equivalent lattice, $r = R/R_1$, and $\Omega = f/f_c$, where f_c is the cutoff frequency.

The insertion loss in terms of the lattice reactances is given by

$$A = 10 \log \left[1 + \left(\frac{UV}{U - V} \right)^2 \right] = 10 \log(1 + D^2)$$
 (22)

The quantity D can be computed directly from Eqs (20) and (21).

$$D = \frac{-(m_1 + m_2)(1 + m_1m_2)}{r(1 - m_1^2)(1 - m_2^2)} + \frac{\Omega[\Omega^2 - (1 - r^2)] \left[\Omega^2 - \frac{1}{1 + m_1m_2}\right]}{\left(\Omega^2 - \frac{1}{1 - m_1^2}\right) \left(\Omega^2 - \frac{1}{1 - m_2^2}\right)}$$
(23)

Equations (22) and (23) give the location of the poles and zeros. The two peaks of attenuation appear in familiar form as the two factors in the denominator or when U = V in Eq (22). It should be noted that for r < 1there are two finite zeros in the passband, one determined by the product of the *m* values and the other determined solely by r (the ratio of the design resistance to the terminating resistance). For unity ratio, when load resistance and design resistance are equal, the second passband zero moves back to zero frequency. The expression for Dshows that if either m_1 or m_2 is given the value of unity, then the corresponding peak of attenuation moves to infinite frequency. For two constant k sections, both m's are equal to unity and the passband zero determined by the m's occurs at 0.707 times the cutoff frequency. The most interesting possibility indicated by Eq (23) is that of controlling the passband ripple by proper choice of the design resistance (relative to the terminations). The zero determined by r can be located freely without regard to the other design constants at the point in the passband which gives the minimum ripple. This is the point which makes the two ripple peaks of equal amplitude. In Fig. 4-2 the solid curves show the single passband zero and single ripple occuring when the load and source have the same resistance. The dashed curve shows what happens when the terminated resistances are increased 20 per cent, corresponding to r = 0.833 for this particular design. A second passband zero is brought in at $1 - r^2$ or at 0.553 times the cutoff frequency. This reduces the ripple amplitude by more than 3 to 1. As the termination resistance is made greater than the design resistance, the two ripples can be made equal and the amplitude reduction is then more than 4 to 1. The passband ripple can be controlled by selecting the terminating resistance in much the same way that the stopband peaks and valleys can be controlled by choice of the *m* values.

The filter specification is shown in Fig. 4-3 in terms of maximum passband ripple and minimum stopband loss. The optimum design in this case (for a given width of the transition region) is the one for which the two m values are selected to give equal stopband minimums (valleys)

and the design resistance is selected to give equal passband ripples. The cutoff is indicated as f_1 and the start of the stopband is f_2 .

In the case of the Zobel filter with three constant Ksections,

$$D = (3\Omega + 16\Omega^{3} + 16\Omega^{3})r$$

- $(3\Omega - 19\Omega^{3} + 32\Omega^{5} - 16\Omega^{7})\frac{1}{r}$
$$D = \Omega(3 - 4\Omega^{2})(1 - 4\Omega^{2})\left[(1 - \Omega^{2})\frac{1}{r} - r\right]$$
(24)

When one of the factors in Eq (24) disappears, the value of D vanishes, and with it vanishes the affective attenuation.

In the case of a pi-section filter, one zero will be at

$$(1-\Omega^2)\frac{1}{r}-r=0$$

For the T-section filter one zero will be at

$$(1 - \Omega^2)r - \frac{1}{r} = 0$$
, or $R_1 = R\sqrt{1 - \Omega^2}$

The second zero will be at $\Omega = 0$ independent of the loading resistance. The third zero will occur when

$$\Omega = \sqrt{\frac{1}{4}} = \pm 0.5$$

and

$$\Omega = \sqrt{\frac{3}{4}} = \pm 0.87$$

also independent of load resistance.

It is possible with the aid of Eq (24) to calculate attenuation as a function of normalized frequency for different values of load and design impedances.

From Fig. 4-4, it is evident that, for the lower part of the passband, the best ratio for Z_T/R is 1.1. In the upper part of the passband the best ratio is 1.5. For practical reasons, only a single value of this ratio can be used.

Appendix 5—Synthesis Procedure for Non-Ideal **Bandpass** Filters

Let us assume that the following filter specification is given:

Input and output impedance = 50 ohm (voltage source). Passband is maximally flat (no ripples). 1 db bandwidth = $8.4 \text{ mc} = bw_p$ (passband width) 40 db bandwidth = $35 \text{ mc} = bw_s$ (stopband width) Center frequency, $f_o = \sqrt{f_1 f_2} = 100 \text{ Mc}$

A solution follows:

1.
$$bw_s/bw_p = 35/8.4 = 4.17 = \Delta f_{40\,db}/\Delta f_{1\,db}$$
 (the response form factor)

2. voltage ratio in the passband = 1.122/1

3. voltage ratio V_p/V_s corresponding to 40 db = 100/1

The number of resonators required is 3.54 (calculated from Cited Reference [3]), so four resonators will be used, as shown in Fig. 5-1. The number of resonators can also be found with tables if the amount of ripple (in V_p/V) is known, and the 3-db bandwidth is determined from the appropriate lower set of curves of Cited Reference [3], pp. 193–198. With known bw_{3db} , the next step is to find $bw_s/bw_{3 db}$, and, using the same ripple factor, to find the attenuation in the stopband (bw_s) from the upper set of curves which belong to the filter of given complexity.

The ratio $bw_p/bw_{3db} = 0.84$ corresponds to $bw_{3db} = 10$ Mc. For the ratio $bw_{40db}/bw_{3db} = 3.5$ and zero db ripple, we find that four resonators will provide approximately 40 db rejection.

The necessary constants for a network having no peaks of attenuation and a transfer function with four poles have been tabulated. [3] The following constants for the case of equal resistive terminations are obtained from that tabulation:

$$q_{2,3} = 26; q_1 = q_4 = 0.776$$

 $k_{12} = k_{34} = 0.840; k_{23} = 0.542$

Note that the filter has a physical symmetry relative to the center of the structure which is characteristic of all filters of the Chebyshev family. Minimum unloaded Qof the two internal resonators will be

$$Q_{\min 2,3} = q_{2,3} \frac{f_o}{\Delta f_{3 \, db}} = 260$$

To estimate insertion loss in the passband of the filter to be constructed the following procedure has to be used:

- Measure the actual Q of the resonators on the Q meter.
- Obtain the value of q_{\min} from the table. [3]

• Calculate $Q_{\min} = q_{\min} f_o / \Delta f_{3db}$. • Determine the coefficient, $u = Q/Q_{\min}$. • Using the curves given by Fubini and Guilliman, determine the insertion loss for the number of resonators used. [4]

In the problem above the coefficient u = 10, and from the curve the insertion loss is found to be 0.9 db.

The required Q_1 of the first resonator may be obtained by choosing such values of the nodal inductance and capacitance (in the case of capacitive coupling) that the generator resistance produces the desired Q_1 . The alternative method is to use the transforming circuit to couple the nonresonant generator to the first node. For most applications this technique is advisable because it allows a choice of values of L and C that are easily realized in practice. A reasonable value of inductance for the filter designed to operate at 100 Mc is about 0.075 μ h. This value will be used for all coils, which will, by the same token, require a nodal capacity of 33.8 pf in all cases. If capacitive coupling is used, these elements and the shunt capacitors can be calculated as follows.

Fig. 5-3—Final four-pole filter design.

Fig. 5-4—Relative minimum unloaded Q for Butterworth and Chebyshev filters. O_{min} is the unloaded Q for which the loss is infinite. $\Delta f/f_o$ is the relative bandwidth.

$$C_{12} = k_{12} (\Delta f_{3db} / f_o) \sqrt{C_1 C_{11}}$$

(The C's with subscript Roman numerals designate node capacitors.) $C_{12} = 0.84(10/100)33.8 = 2.48$ pf. The first nodal capacitor is set at 33.8 so $C_a = C_1 - C_{12} = 31.32$.

$$C_{23} = k_{23} (\Delta f_{3db} / f_o) \sqrt{C_{11} C_{111}} = 1.83$$

where $\sqrt{C_1 C_{11}} = \sqrt{C_{11} C_{111}}$ and so on; $C_1 = 33.8$ pf.

$$C_b = 33.8 - 1.83 - 2.48 = 29.49 \text{ pf}$$

 $C_{34} = C_{12} = 2.48 \text{ pf}$
 $C_c = C_b = 29.49 \text{ pf}$
 $C_d = C_a = 31.32 \text{ pf}$

The circuit design for the filter calculated above is shown in Fig. 5-1. The design is considered complete except that the proper transformation of the generator impedance and the first resonator has to be done to produce the required quality factor in the first resonator. The same transformation has to be performed with the last resonator. The most practical transformation for the above case is shown in Fig. 5-2. The shunt capacitor may be used to absorb the distributed capacitance usually associated with the input and output circuit. The transforming circuit can be calculated in the following fashion:

$$\frac{C_1}{C_2} = \sqrt{\frac{R_x}{R_1}}$$
$$\frac{C_1 C_2}{C_1 + C_2} = C_a$$

where R_x is the transform value of R_1 required to produce the specified Q. Incidental coil dissipation (neglecting capacitive losses) is accounted for in the following way:

$$\frac{1}{R} = \frac{1}{R_x} + \frac{1}{Q_L X_L}$$

In this equation R is the value of nodal shunt resistance required to obtain the specific Q_{out} . The output transformation is similar to the input transformation, and the final circuit of the completed filter is shown in Fig. 5-3. Fig. 5-4 shows the relative minimum unloaded Q for Butterworth and Chebyshev filters.

Cited References

- "Insertion Loss and Insertion Phase Shift of Multi-Section Zobeł Filters with Equal Image Impedances," W. Saraga, *P.O. Electrical Engineering*, Vol 39, January 1947, pp 167-172.
- [2]. "Design of Dissipative Band-Pass Filters Producing Exact Amplitude Frequency Characteristics," M. Dishal, Proc. IRE, Vol 37, September 1949, pp 1050-1069.
- [3]. Reference Data for Radio Engineers, 4th ed., ITT Corp., New York (1956).
- [4]. "Minimum Insertion Loss Filters," Fubini and Guillemin, Proc. IRE, Vol 47, January 1959.

Bibliography

- "Theory and Design of Electric Wave Filters," O. Zobel, Bell Syst. Tech. J., January 1923.
- "Synthesis of Parameter Symmetrical Filter," A. Grossman, Proc. IRE, April 1957.
- Reference Data for Radio Engineers, 4th ed., ITT Corp., New York (1956).
- "Direct Coupled Resonator Filters," S. Cohn, Proc. IRE, February 1957.
- "Realization of Filters with Helical Components," A. Zverev and H. Blinchikoff, *IRE Trans. PGCP*, September 1961.
- "Filters in Electronics," A. Zverev, Westinghouse Engineer, March 1963.
- "Microwave Filters," E. Torgow, ELECTRO-TECHNOLOGY, April 1961.
- Network Analysis and Synthesis, L. Weinberg, McGraw-Hill Book Co., New York (1962).
- "Network Transformations in Ware Filter Design," A. Zverev and H. Blinchikoff, *Electronics*, June 26, 1959.

REPRINTS of this 66th article in ELECTRO-TECHNOLOGY'S Science & Engineering series are available at \$1.00 per copy. Use the handy Order Form on page 133 or write direct to ELECTRO-TECHNOLOGY, 205 East 42 Street, New York, N.Y. 10017.

90 ELECTRO-TECHNOLOGY | JUNE 1964

EE 533 NETWORK SYNTHESIS II

Jan. 11, 1973

Nomework Problems

16-A1

1.1

Realize the high-pass transfer admittance whose squared magnitude is given by

as a lossless ladder network terminated at both ends in a 1000-Ohm resistance.

16-A2

b) If this is the transfer impedance $\frac{V_2}{I_1} = \frac{V_2}{I_1}$ of a lossless quadripole terminated in a load resistance of 1-Ohm, find the metwork.

both ends, find the network,

82

Curve 1. Attenuation characteristics for Butterworth filters.

;

Curve 3. Attenuation characteristics for Chebyshev filter with 0.01 dB ripple.

(

(

Curve 8. Group-delay characteristics for Chebyshev filter with 0.5 dB ripple.

Curve 11. Attenuation characteristics for maximally flat delay (Bessel) filters.

Curve 12. Group-delay characteristics for maximally flat delay (Bessel) filters.

16:7 Frequency Transformations (p. 479) Let & correspond to the normalized filter, and IL = m { x} Let s correspond to the setual filter, and w = Im {s} It1A Wo For simple frequency scaling S = 5 00 $\mathcal{L} = \frac{\omega}{\omega_{p}}$ Reactance Transformations IL = Zecfunction of w Example: $\Pi = \frac{(\omega_1^2 - \omega_2)(\omega_3^2 - \omega_2)}{\omega(\omega_2^2 - \omega_2)}$ $\frac{1}{1-\frac{1}{2}}$ <u>~</u> W3 /w

L. LP -> HP A = - 4 S = 5 , Design Procedure for HP Filter HP specification ____ LP spee. (normalized) 1. 2. HP alleunstion requirements => C.P. attenustion 3. Realize the normalized LP filter. 4. Replace G. = 1. L by C Replace C by L L; = L; 5. Remove the frequency and impedance normalizations Example: 75 Allè 1507 2 500 26 500 x106 y O Cor \$ 60 m 66 Assume that a 3rd order Butterworth filter will be adequate

3 LP spec S Erample 1 p. 435 From /t(j,Q)) 2 = 1+16 + N⁶ 1 + N⁶ [P, (: I)) 2 = + 15° 3 P. (S) = 5'+2 52+2 5+1 2542541 $Z_{ii} = R_i \frac{1 - P_i}{1 + P_i} =$ 283+252+25+1 Ľ VsC change to HP 1/2 L'= L 60 500K106 c'= c_1 60 K500 K106 Wo = SOOKIOG and R=60A change to 16.67 pF 600 3.12,11 \$.12,11 \$60r

For computation purposes the LP prototype can be used as follows: Suppose we are interested in attenustion at w = 200 ×106 vod/sec. From Λ = ~ <u>μ</u> = - 500 = - 2,5 ω = - 2,5 N2 = 6.25 R6 = 244,14 $|t_{(j,\mathcal{R})}|^2 = \frac{1}{1+\mathcal{R}^6} = \frac{1}{1+244.14}$ = 4.08 ×10-3 dB = 10 logio (t(, r))² = - 23,9 4B is the star goin at was 200 nio 6 vad/see $\mathcal{R}_{L} = \frac{\omega^{2}}{\omega} \frac{1}{\omega} \frac{1}{\omega} = \frac{\omega^{2}}{\omega} \frac{1}{\omega} \frac{1}{\omega} = \frac{\omega^{2}}{\omega} \frac{1}{\omega} \frac{1}{\omega} \frac{1}{\omega} = \frac{\omega^{2}}{\omega} \frac{1}{\omega} \frac{1}{$ L P S = 53 + 155 - W 6 W к 1 1 иг 1 иг we when $\mathcal{N} = \frac{w^*}{\omega^*} = 0$ $\omega = \frac{1}{2} \frac{1}{2} \sqrt{1 + \psi^{\omega_0}}$ W2 = 2 + V + + 1 40 - - 1 2 7 1 . A W.2

BW= W2-W1 = $\omega_{1}\omega_{2}=\left(\sqrt{\frac{1}{2}}+\frac{1}{2}\right)\left(\sqrt{-\frac{1}{2}}\right)=\frac{1}{4}+1-\frac{1}{4}=1\implies \omega_{1}^{2}$ Design Procedure for BP Filter (with geometric symmetry) Defermine BN= w2-w, l. 121 $\omega_0 = I \omega_1 \omega_2$ 2. BP spec. => LP spec. with BW normalized $\int S = \frac{s^2 + \omega_0^2}{(BNJS)} \int$ 3. Realize the GP prototype filter Denormalize LP components with respect to BW. 4. and impedance level .. L' = Bu L Kz $C' = \frac{1}{BW} C \frac{1}{K_{*}}$ 5. Convert to BP filter with center frequency wo - WECI of the

LP -> BE 5 + 42 \$ = JL = W W2-WL 2 63 Wo . BW S Sitwic Including Bbs S = SZ = (BW) W Wz 2-W2 After obtaining 6P prototype filler, Penormalite é impedance Øw level. Then convert to BE filter. CI e' 6: 1 -16 6" >C = 1 6' W. 2 Note: These transformations do not preserve lineso phase chavacteristics _____ de = de de de

BOB MARKS ĺ ĺ ,

EO. NITRA. SALLEN AND KEY -983275--9855 DESIGNINC T UNCTION X Ц О $\langle \eta \rangle$ IS 1/3, THE PARAMETED SUCH EQUATIONS AS Eq. 3 THE NORMALIZED TRANSFE QNV V よう W キロノエ AS CONCLUDED FROM "VERY HIGH Q INSENSTIVE 0 S 4 Q "R.C. AMPLIFIERS ... BY GEFEE MEASURE IN ACTIVE INDUCTORLESS FILTERS FOLLOWS \bigcirc TARMY M M FOR h = 1 THE TRANSFER F F1G. 56 t U T 4 FRON "& PRACTICAL MELTOD OF П 8.9 . 「モイト」を見 A N X ON ه ح დ ≫ ¢ DESIGN PROCEDURE SHOWN IN IS EFFECTIVELY A 80 PS SH ; AND 0 U USFER FUNCTION: Giz(s) = Sz + ds + 1 RC ACTIVE FILTERS CIRCUITS " THE CIRCUITS Q 0 H ON PS, 74. THUS: Q = 1/d U) MEASUR OFS REO FLTER 16(jw) 15 CHAUST TRANSFER AT W0= 1 RCTIVE $\overset{\circ}{\overset{\circ}{\overset{\circ}{}}}$ FRON FROM アシック T 5 60 **V**} fran . 0

Į .

ET THE FLLER SPECIFICATIONS BE	OR A HIGH PASS SECOND ORDER	30TTERWORTH, TYPE, ACAIN: GI2(S)= 52+ d5+ 1 HUS: GI2(jw)= -22+ jdw+1	\mathbb{F}	SELOW IS THE CHOSEN HIGH PA ONFIGURATION, AS SHOWN ON SESS IN FIGURE 3:	A Ha Ha	FFINE: T R. C. : T2 - RACA; F. S. C.	FLATIONSNUPS: TITZ II LINNSNUPS: TITZ II LINNSNUPS:
--------------------------------	-----------------------------	--	--------------	---	---------	---	---

EQUATION Pg. 56. ASSIGNING (AND T. , INTERASY IS CANTERNO CONCERNING OF GROUP I DICTATES XNIN I 4(1+5) Ľ 0 L and the second FOR CONPUTATIONS No. of the second s 9 20 GROUP I 0 U VALUE X 5 1) 0 N 0 đ

0 (0) and the second

4 (2,5

11

¢ 3 CONVENIENT MAGNITURE OF UNITY +MVE U. O THE CORRESPONDING VALUE IS GIVEN BY EQUATION D: LET THE VALUE OF X 0

 $T_{1} = \frac{d}{2(1+y)} L \pm \sqrt{1 - \frac{4(1+y)(1-k)}{d^{2}}}$ 1 Å

(2.5) ٥ ٩

YIELDING THE CIRCUIT BELOW.

	TO SHIFT TO POP HE, THE RESISTIVE ELEMENTS ARE DIVIDED BY WORRTNON (P. E. FREQUENCY OF GREATEST TRANSFER) P. R. = ZTWIDZ = 3.18 × 10 4 S. R. = ZTWIDZ = 3.18 × 10 4 S. R. = ZTXIDZ = 3.18 × 10 4 S. R. = ZTXIDZ = 3.18 × 10 4 S.	A A A A A A A A A A A A A A A A A A A		
. ((((

	SENSITIVITY CONBIDERATIONS TT IS NOTED UNDER METTOR 1 OF	POLE DESENSITATION (PESO) OF "THE OPERATIONAL AMPLIFIER IN LINEAR ACTIVE NETWORKS" BY	MOSCHYTH THAT THE GAIN SENSITIUITY FOR UNIT FORWARD GAIN FEEDBACK CONFICURATIONS 15. NEGLIBLE, AND	WILL THUS NOT BE CONSIDERED. THE SENSITIVITY OF A FUNCTION & WITH RESPECT TO AN FLEMENT X	SUCTION FOR	THE QUESTION ARISES AS TO THE CHOOSING OF Y AND X DESCRIPTIVE OF THE NETWORK, IT IS NOTED THAT THE DARANETER A IS NONDIFTELY	DESCRIPTIVE OF THE MAGNITUDE OF THE HIGH PASS FILTER FOR A GIVEN NEK (SEE FIG b, PG. 60). SO FOLLOWING IS AN ANALYSIS OF	THE SENSITIUITY OF & WITH RESPECT TO THE PASSIVE ELEMENTS.
. (((((

0,4 (2,9 at x 11.59×10. (2-0) Q + (2) (7.68×103) 3 0 G 4 X Z X FOLLOWS' A Contraction * 0 * LU T F S. S. EQUATION (a), GROUP 103)(1. 15 11 88 イェレ 0 e e T, $(1 + \delta)$ Ľ 1.6.0 œ 0 ഗ PASSIVE ELEMENTS 6 8 SENSITIUITY ţŧ 11 5° 0 00 1 50 = C + C = > - RIC2 + RICI * × |+ + ペン" 562 "R) 1 2 2 2 2 1 1 p) (9 a) Sc₂ FROM ١I <u>0</u> N

(-)

50	50, = R, > Sd' = Rich 1. (1.63×103)(1.77×10-7) 1.9,63×10-4	Sa FROM GROUP IT, Eq. a :	d= TT = 1+ C THIS FOLLOWS ALSO FROM T. TZ= 1 AND EQATION (ON PREVIOUS PACE)	5d = - C2(X+1) - (4+1) 5R2 = (R2C2)2 = R2C2	Sa - TITL R	11 - (4+1) a R2 C3	- 2.5 - 12.(3.18×104)(1,79×10-9)	M M II	E FOLLOWING DATA STEMS FROM RIATIONS OF A SINGLE PASSIVE EMENT FROM FIG. C
0		$\overline{\sigma}$							T & T

Ĺ

Ć

(PEAK) db (2 0.10 b) 9 m 3 m 5 3 ģ 0 0 s M V K II - SI K v (± 0,05 v) N N N N is al 7, 20 с! 7 7 6 6 (b) SENSITIVITY : SENSITIVITY: P(H N FM) 000 000 5 000 00 6 2 ^

> (\langle

4

(

12 12 - 3db - 0,2db 0, 2 L 2 0 0 0 0 + 6 (2) 0 1 1 d V 11 () 1 2 2 3 4 4 5 < 1 22 22 W , A 7 A 0 (c) sensitivet 000 4 K - 0 9 0 0 0 9 0 0 0 3 2 0 14 e 14 c.

ĺ

ATTENUATION 1 0' M Ь, Ó , 0 1 4 r) 1 2 75 0 (V) 1 044A. R2= 500 K A BOVE ROC GI 10 2 10 7, 2, 19 v, V OA TA : 9 ~ 0 1 1 0 0 1 1 0 1 5 19 H C 2 しょく 10 10 10 (d) sensitiuity t 72 (PEAK) FOLLOWIN G Ľ SEFCTES R = 20 670 000 о т л 000 h á 1 T

Ć

THE MOST NOTABLE DEVIATIONS OCCUR WITH CHANGES IN THE Ra VALUE (~3070 DOWN, ~7070 UF) CORRESPONDING TO THE RED AND BROWN SKETCHES OF FIGURE D. AS WAS COMPUTED EARLIER, d HAS HIGH SENSITIVITY WITH RESPECT TO R2, THUS THE MORE DRAMATIC CURVE ALTERATIONS, EVEN SO S_{R2}^{d} AS COMPUTED SEEMS NOT TO BE AS LARGE IN EXPERIMENT,

THE LOWER SENSITIVITIES WITH RESPECT TO R., C., AND C2 ARE ILLUSTRATED UPON NOTING VALUE DEVIATIONS FROM THOSE PERSCRIBED RANGE UP TO 10070 FOR SIGNIFICANT TRANSFER CURVE ALTERATIONS, THIS IDEA WAS ALSO BORE'OUT FROM NO NOTABLE TRANSFER ALTERATIONS FROM PASSIVE ELEMENT DEVIATIONS ON THE ORDER OF 590. (DATA NOT INCLUDED.) A FINAL NOTE CONCERNS THE NON-MAXIMALLY FLAT TRANSFER FUNCTION, WHICH IS SUPPOSEDLY A SECOND ORDER FREQUENCY TRANSFORMED BUTTERWORTH.

 $\frac{1}{10} |G_{12}(j\omega)|_{Lp}^{2} = \frac{1}{\omega^{4}+1}$ FOR THE LOW PASS CASE. TRANSFORING TO A HIGH PASS IS ACHEVED BY SUBSTITUTION OF $\frac{1}{\omega} FOR \quad \omega; \quad \frac{1}{(G_{12}(j\omega))} = \frac{1}{\omega^{4}+1}$ $= \frac{\omega^{4}}{\omega^{4}+1}$ THE PERSCRIBED TRANSFER FUNCTION. FOR $d \neq \sqrt{21}$. $|G_{12}(j\omega)|_{Hp}^{2} = \frac{\omega^{4}}{\omega^{4}+(d^{2}-2)\omega^{2}+1}$ POSSIBLY PURE ELIMINATION OF THE DENOMINATOR'S SECOND

THE DENOMINATORS SECOND ORDER COEFFICIENT DOES NOT TAKE PLACE IN EXPERIMENT, ACCOUNTING FOR THE PEAK. EXAMINATION OF FIG. (d) SUGGESTS USE OF C2=0.066µF FOR FLATTER BAND, いいすの トエの 2 RESPONSE (((

.

影动物化物的出生 熟得。 生命字母

EG-533 NETWORK SYNTHESIS II

Toke-Mome Finel Exam

 $\langle \cdot \rangle$

12. 12. •

Due 12:00 Noon, March 1, 1973

1. Work all 4 problems.

2. Annotate your solutions so I can follow your procedure. (Refer to the equation number if you are taking the equation from a textbook.)

3. Sign the statement below.

I certify that I have neither given nor received aid from another person on this examination.

Robert J. Marks II

to these a bound-prosen to home-person thempformation to convert the following againstication and the determine the transmission function of the low-pane prototype filter if the filler is required to be a) a butterwork type , (typ) = _ b) a Chebysher type, |t(gw) = ___ (Do not realize the fille. It is not necessary AB 3.5-16 1 - 40 177 0,99 4 \$ 61.01 Alteniation 5 0,5 dB For Attenuation 20 410 dB f ≤ 0,98 FNK≥ 1.02 FLE ≥ 1.02 f08 So the Vorta Alion 2 100 Mego Herta leg q

.

We deadling a set wider the hypother two pass fitter with a passband ripple of 1.0 dB which is terminated in 1 alson at both ands, $V_5 \in \frac{4\pi}{16} \left[\frac{1}{16} + \frac{$

(Note: Equations 13,28 may be of some help.)

Ŋ

. . .

Repeat the specifications of problem 2 but realize a filter terminated in I olan at the output, I, PLC FIA. $\left|\frac{2}{2}(2)\psi\right|^{2} = \left(\frac{1}{7} + 0.2589 \left(\frac{4}{4} + 10^{3} - 3\psi\right)^{2}\right)^{2}$ Network configuration and element values = ?

A) Repeat the specifications of problem 2 but realize a filter operating into an open circuit. z Q d 44 D V2 $3_{12} = ?$ $3_{12} S_{12} S_{12} = \frac{1}{1 + 0.2589(4\omega^3 - 3\omega)^2}$ $3_{22} = ?$ Network configuration and element values = ?

1) FROM INTRODUCTION TO FILTERS BY EVEREZ,
$$f_{z}$$
 78
 $f_{t} = \sqrt{f_{c} f_{-c}} = \sqrt{(c.94)(1.01)} = 1$ (MHZ)
 $Y_{c} = \frac{f_{t}}{f_{t}} = 1.01$
 $Y_{-c} = \frac{f_{t}}{1.c} = 1.01$
 $f_{-c} = 1 = 0(Y_{c} - Y_{-c})$
 $= a(0.02) \Rightarrow a = 50$
 $f_{-s} = a(Y_{s} - Y_{-s})$
 $Y_{s} = \frac{f_{-s}}{f_{t}} = 1.02$
 $Y_{-s} = \frac{f_{-s}}{f_{s}} = 0.98$
 $\Rightarrow f_{-s} = 50(0.04)$
 $= 2.00$
 $\frac{cdb}{f_{-s}} = \frac{f_{-s}}{f_{-s}}$
 $y = \frac{f_{-s}}{f_{-s}} = \frac{f_{-s}}{f_{-s}} = \frac{f_{-s}}{f_{-s}}$
 $f_{-s} = \frac{f_{-s}}{f_{-s}} = \frac{f_{$

Si=1 Ω3du Ω=2 Ω→

- 40db

(F)G1A)

AN EQUIVALENT TRANSFORMATION TO THE NORMALIZED LOW PASS FILTER $t_{LP}(f)$ FROM THE ABOVE BAND PASS SPECIFICATIONS FOR THE GIVEN BAND PASS TRANSFER FUNCTION $t_{BP}(f)$ IS: $t_{LP}(f) = t_{BP} \left[\frac{f-106}{104} \right]$
FROM PS 28 OF BRAPH HANDOUT BY EVEREZ, THE CHEEYSHEV FILTER MUST ATTENUATE HO db $Q \Omega = 2 \Rightarrow n>4$, so LET N=5. FOR 0.5 db RIPPLE = 0.056

 $1 - \sqrt{1+e^{2}} = 0.056 \implies Eq. 13.18 \text{ in VAN VALKENBORG}$ $- \sqrt{1+e^{2}} = 0.944$ $-\sqrt{1-e^{2}} = 1.06$ $1 + e^{2} = 1.124$ $e^{2} = 0.124$

THIS FUNCTION ALSO VIELDS A ROLL OFF OF ABOUT 46db/OCTAVE, GREATER THAN THE DESIRED 39.5 db/OCTAVE. ATTENUATION @ $\Omega = 1$ is 3db, 9 0.5 db odb -3db -40db -40db -40db -46db -47db -4

SO THE NORMALIZED CHEBYCHEV L.P. B.W. IS UNITY AS DESIRED. FOR N= 4, ATTENUATION AT A=2 is ~35db, SO THE ROLL OFF IS NOT ADEQUATELY STEEP, IT MUST THUS BE CONCLUDED THAT MEETING THE D= 2, ATTEN = 40.0 db SPECIFICATION IN THE CHEBYCHEV REALIZATION MAY ONLY BE ACHIEVED BY AN ALTERNATE RIPPLE SPECIFICATION OR POSSIBLY BY A DIFFERENT FREQUENCY TRANSFORMATION, HOWEVER IN THAT OVER ATTENUATION IN A FILTER'S ROLL OFF IS SELDOM CONCERN FOR ALARM, THE PRECEEDING CHEBYCHEV DESIGN STANDS AS A REASONABLE SOLUTION.

AN ALTERNATE FREQUENCY TRANSFORMATION IS NORMALIZATION OF THE 3db DOWN POINT TO UNITY, PRODUCING ON ONE HAND, A FLATTER RESPONSE IN THE PASS BAND, BUT ON THE OTHER, A FASTER RATE OF ATTENUATION AND THUS IN GENERAL A LARGER M. THE 3db DOWN POINT FOR THE NORMALIZED LOW-PASS IS FOUND AS FOLLOWS: (FROM FIG. 1)

$$\frac{1-j_{2,4b}}{2.5} = \frac{1}{39.5}$$

$$\Lambda_{3db} = 1 + \frac{2.5}{39.5} = 1.063$$

THE 40 db SPECIFICATION THUS OCCURS $\Omega = \overline{1.063} = 1.88$

CAREFULL ANALYSIS OF THE CHEBYSHEV 0.5 db RIPPLE CURVESSTILL YIELDS MES, AND THE PREVIOUS TRANSFER FUNCTION REMAINS UNCHANGED, YET FREQUENCY SCALING TO THE PASSBAND IS V ALTERED SLIGHTLY

FROM PE ER OF SAME HANDEUT, THE BUTTERWORTH MUST ATTENUATE 4006 @ D = 2 = 176, so ust n=7 THUS: $ G_a g_{ab} ^2 = 1 + u^{2n}$ $= 1 + u^{2n}$	AGAIN, THERE IS OVER ATTENUATION AT AL = 2 ~ (42 db). THE NORMALIZED B.W. IS OF COURSE UNITY	the for the former of the form	- 2 debry debry debry	·
((((

(

IF THE $\Omega_{3db} = 1$ NORMALIZATION IS EMPLOYED, IT IS NOTED THAT THE HODD ATTENUATION CRITERIA IS NOT QUITE MET @ $\Omega = 1.88$ FOR N=7. THEN FOR FLATTER RESPONSE IN THE PASSBAND AND A QUICKER RATE OF ATTENUATION JET N=8THUS: 1

 $|G_{12}(j\omega)|^2 = \frac{1}{1+\omega^{16}}$

IT IS TO BE NOTED THAT BOTH THE BUTTERWORTH AND CHEBYSHEV' CURVES ZVEREZ A NORMATIZED TO -3db @ D=1, SO THAT THE -3db FREQUENCY NORMALIZATION FOR THE LOW PASS PROTOTYPE IS IN FACT THE CORRECT PROCEDURE.

SINGULARITIES: Pole LOCATIONS FOR OF OR UNIX STERVEHEN V. + LINALD LIN SKITT D. KINGLINN UN COLLO LON PAT D. KINGLINN W3=1,117 CO2 6 H.J W2=1,117 000 2 SYN. OF = 0.0 29 1950or a could ; colo con 1.17 0 1+ 0.2589 (402 · 5 2) т " С =(=)(1,42)=0.477 X - FOLV NON AL = = with " (1.97) OUE TO SCAUPADAL r **(**1₃ ¢ 212 62:0.259 数 6=0.509 44. 200 1 0 000 The surface with the $= 1 + e^2 C_n^2(\omega)$ 72 - 5. 499 AIN 2 1. a = 0. 199 - 0 449 X - 2.25 -0.250 * CHEUYSHEV 2) t(j w) 2 = sc

(

(

(\$+0.499)(\$-0.499)(\$+0.25 \$0.969)(\$+0.2500.969) (\$-0.25 \$0.49)(\$-0.25 \$0.969) UPON EXPANSION, THE VEIXTH OR UER TEKN RROCEDLRE FROM TABLE 18-1 Pg. 435 of Van Valatinburg N T < $\frac{C(-s^2)}{C(-s^2)}$ (Fa C) URE FROM (s+0.25+j0.969)(s+0.25-j0.969) (s-0.25+j0.969)(s-0.25-j0.969) M JACE - E 216, THUS **3** $p_{1}(s), p_{1}(-s) = \frac{-e^{2}(16 - 5^{4} + 24 - 5^{4} + 9 - 5^{2})}{1 - e^{2}(15 + 24 + 34 + 9 - 5^{2})}$ $\frac{1}{6(-5^2)} = \frac{1}{2 - e^2(165^6 + 245^4 + 95^2)}$ B(-52)=-16E2(Sto.499)(S-0,499) THUS B(-S2) HAS ZEROS FROM $\frac{e^{2}(16\omega^{6}-34\omega^{4}+9\omega^{2})}{1+e^{2}(16\omega^{6}-24\omega^{4}+9\omega^{2})}$ = :+ 0.258? (403-30)² 0.2539(HW 3-3W)² EQ, B MUST BE $|\sum_{i=1}^{n} \omega_{i}|^{2} = 1 - |t(j, \omega_{i})|^{2}$ $= \left| t(j \omega) \right|_{s=j \omega}^{2}$ ţĬ FROM

(

$$C(-5^{2}) = -E^{2}(165^{6} + 245^{4} + 95^{2})$$

= -E^{2}(45^{3} + 35)^{2}
= -E^{2}(45^{2} + 3)^{2}
= -E^{2}(45^{2} + 3)^{2}
= -E^{2}(45^{2} + 3)^{2}
= -E^{2}(-5^{2})
= B(-5^{2})
= +5^{2}(+5^{2} + 3)^{2}
= +16(5+0.499)(5-0.499)(5+0.25+j0.969)(5+0.25-j0.969)

$$= \frac{5(45^{2}+3)}{4(5+0.499)} * \left[\frac{4}{(5+0.25+j0.969)(5+0.25+j0.969)} \right]$$

$$= \frac{(-5)\cdot \frac{1}{4(-5)^{2}+3^{2}}}{4} \left[\frac{4}{(-5)+0.499} \left[\frac{(-5)}{(-5)} + 0.25 + 0.969 \right] \left[\frac{1}{(-5)} + 0.969 \right] \left[\frac{1}{(-5)$$

EMPLOYING LEFT HALF PLANE SINGULARITIES AND CONJUGATE J-AXIS ZEROS:

$$p_{1}(s) = \frac{s(4s^{2}+3)}{4(s+0.499)} \left[\frac{1}{(s+0.25+j0.969)(s+0.25-j0.969)} \right]$$

AND

$$p_1(s) = s(4s^2 + 3)$$

 $= 4s^3 + 3s$
 $q_1(s) = 4(s+0.499)(s+0.25+j0.969)(s+0.25-j0.969)$
 $=(4s+2.0)[(s+0.25)^2+(c.969)^2]$
 $=[4s+2.0][s^2r 0.50s+1.01]$
 $= 4s^3+4s^2+5.04s+2.02$

	0 ้ย	N H	5 5	
8 4	Σ Γ Γ	202	a a	i.
4 4 1 1 4 0	A P CC	v v v	+ v /	
A R C	F = 4 - 7	+ +	7 7 7	4
\$ (S	2 0	+ 4 5		0
		5° 5°		
2.0 2.0 10 10 10 10	0 L	200	TN N	leep
1 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	440	5 +37		
к + 0 Ш		.04 S S	· –	000
0 0 × 0 × 0	SYN SYN	+ +	n	
+ 0 + + - + - + - + - + - + - +	SHC HE	* S * S		
	SW TT NG	N	<u>न</u>	
N - A - S - N - S - S - S - S - S - S - S - S	TER. THUS Belg	۶		>"

- . -- .

_ ____

(

.

_---

ć ł

Ĺ

(

(

. (

A QUICK CHECK:
$$\frac{45}{35}$$

 $I_{1} \oplus \frac{3}{35} \oplus \frac{45}{1} \oplus \frac{45}{35} \oplus \frac{45}{1} \oplus \frac{2}{3} \oplus \frac{2}$

 \sim

-

----. 4) $|Z_{12}(j\omega)|^2 = \frac{1}{1+0.258^{\circ}(4\omega^3-2\omega)^2}$ FROM PROBLEM (3) $Z_{12}(s) = \frac{1}{4s^3+4s^2+5.04s+2.02}$ $= \frac{1}{4\epsilon(s+0.5)(s+0.25+j0.66\epsilon)(s+0.25-j0.964)}$ NOT THE TRANSFER FUNCTION FOR A PRACTICAL LC NETWORK. IT IS TO BE NOTED THE SOLUTION TO PROBLEM 3 HAS MIDENTICAL TRANSFER CHARACTERISTIC, WITH THE 1 SL LOAD RESISTER INCLUDED IN THE NETWORK:

ANALYSIS OF Z₁₂(S) HAS ALREADY BEEN SHOWN TO MEET THE CIVEN Z₁₂(S) FUNCTION. FOLLOWING IS ANALYISIS OF Z₂₂= $\frac{V_2}{I_2}$

Ļ

4 4 j 0 T NOTE EQUIVALENCE OF DENORINA FOR

(

ĺ